Systems Integration Projects

     Power Distribution and MIcrogrid Systems

Hawaii Solar Integration Study (2010 - 2012): The Hawaii Solar Integration Study (HSIS) builds upon the knowledge gained in the Oahu Wind Integration Study (OWIS).  The study examines very high penetration scenarios of solar and wind energy – up to 760 MW of distributed and utility scale solar PV and 300 MW of wind resources for Oahu, and up to 45 MW of distributed and utility scale solar PV and 72 MW of wind on Maui.  Focusing on the operational impact on the Oahu and Maui bulk power systems, the HSIS evaluates reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability, operations and costs.  Key to the study, high-resolution (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model / stochastic-kinematic cloud model approach, which represents the “sharp-edge” effects of clouds passing over solar facilities.  

Oahu – Maui County Grid Interconnection Study (2012 – 2013): HNEI continues to drive, in partnership with Hawaiian Electric Company, a study that builds upon the work of both the OWIS and HSIS to examine the value proposition of prospective grid interconnection of the power systems on Oahu to those in Maui county (Maui, Lanai and Molokai) via submarine power cables, advanced control systems and operational strategies.  This study is of critical importance to the State of Hawaii as high-cost investment decisions regarding the desirability and benefits of grid interconnections via submarine power cable systems progress.  Study completion and report publication is targeted for 2013.

Oahu Wind Integration Study (2008 - 2010): Utilizing a variety of modeling and grid simulation tools, this study evaluated the technical feasibility and economic viability of operational strategies, improvements to existing infrastructure, and new technologies to enable high penetrations of renewable energy in Hawaii.  More specifically, through the implementation of key mitigation measures including wind power forecasting, refined reserve requirements, reduced minimum power of baseload units, seasonal cycling of select baseload units, and modified generator and wind turbine controls,  a viable strategy was developed to integrate up to 500 MW of wind and 100 MW of solar energy on the isolated Oahu power grid.


     Energy Storage Systems

Battery Energy Storage System (BESS) Testing and Evaluation: The focus is to deploy, operate, and validate the performance of four grid-scale BESS for various ancillary service applications on grid systems across the state. 


     Smart Grids

Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions (2008 – 2014):  This multi-year research project is to develop and validate the use of smart grid technology to reduce peak demand and facilitate the integration of intermittent renewable technologies.  The project includes the recruitment of residential utility customer volunteers in south Maui and the development and integration of advanced utility infrastructure with intelligent hardware and software systems. 

Development and Demonstration of Smart Grid Inverters for High-Penetration PV Applications (2011 – 2015): This HNEI led multi-year research project will integrate grid management functionality software and standards-based communications hardware and software to create a “smart grid inverter.”  Through modeling, development, testing, and deployment, the project aims to demonstrate the ability of the smart grid inverters to mitigate grid reliability impacts resulting from high-penetrations of distributed PV systems.  Key partners in this project include utilities HECO, MECO and PHI, technology providers Fronius, Silver Spring Networks and Hitachi, and community volunteers and stakeholders.

Japan-U.S. Island Grid Project (2011 – 2016): This large-scale smart grid project valued at over $40 MM is funded by the New Energy and Industrial Technology Development Organization (NEDO), a Japan government agency, and is led by technology provider Hitachi.  The project seeks to integrate high levels of PV, wind energy, and electric vehicles into an island based smart grid environment on Maui.  HNEI serves a key technical advisory role and is guiding the close coordination of project development and execution across all three Maui-sited smart grid projects.


     EV Impacts

Oahu EV Charging Study (2012 – 2013):  Leveraging the validated models of the Oahu power grid refined in the OWIS and HSIS, the study’s primary objectives are to quantify the impact of electric vehicle charging on Oahu grid operations and to explore how different control techniques to manage EV charging profiles could further enhance the integration of wind and solar resources (e.g., by reducing curtailment and/or providing a new source of reserves).  Study completion and report publication is targeted for 2013.