Energy Policy of the State of Hawaii

Update on the World's Leading Energy Transition Model

Mark B. Glick Specialist, Energy Policy & Innovation Hawaii Natural Energy Institute, Univ. of Hawaii at Manoa May 9, 2019 Jeju, South Korea

Hawaii Natural Energy Institute (HNEI)

School of Ocean and Earth Science and Technology University of Hawaii at Manoa (UHM)

- Founded as organized research unit in 1974, established in statute in 2007 – serves as the State's lead on energy resource and technology development seeking solutions to renewable generation, transportation fuels, grid integration, and energy policy
- 4 major funding sources; UHM, Barrel Tax, Extramural, Applied Research Laboratory
 – alternative energy via HNEI recognized as core competency for the UH Advanced Research Laboratory
- Diverse staff including engineers, scientists, lawyers; students and postdoctoral fellows, combining research excellence & deep experience:
 - Our policy team features a former PUC Commissioner & State Energy Administrator – GridSTART features >120 years cumulative utility experience
 - Two of the three current PUC Commissioners were hired directly from HNEI

Strategic Focus

Hawaii Innovation Initiative

- Research, Development, Testing & Evaluation
- Analysis
- Policy Guidance
- Workforce Development

Programs & Alliances to Replicate and Expand

- Asia Pacific Regional Energy Systems Analysis (APRESA) supported by the Office of Naval Research - to develop resilient renewable energy systems in the Asia Pacific
- Islanded Grid Resource Center 2.0 in collaboration with Maine's Island Institute & the Renewable Energy Assistance Project of Alaska

Hawaii's Economic Recession (2008-09)

Decline in Hawaii and U. S. Economy and Hawaii Tax Revenues FY 2009

Freefall in tax revenue & job growth

Source: State Department of Labor & Industrial Resources

Source: Lawrence Boyd, Univ. of Hawaii 2011

A Comprehensive Approach

RPS (Binding RE Targets)

EEPS (Efficiency Goals)

Regulatory (Regulatory Framework & Oversight)

Analysis (Planning, Design & Optimization)

RD&D (Technology & Innovation Economy)

- 100% RPS
- 4,300 GWh
- Dockets
- Design
- Test Bed

Initial Energy Policy Measures

US DOE/Hawaii Agreement, State of Hawaii/HEI

Companies Energy Agreement Renewable

Portfolio Standards (RPS)

2009

2008

•Act 69 removes impediments to customer sited RE

•Act 208
establishes
Energy
Security
Special Fund

• Act 31, Act 145 Allows RE generation on Ag lands

- Maui County PV/Wind Permit Guide, DSA 18.0
- HRS 196-6.5 new home solar hot water heating mandate
- •Act 155 revised RPS to 25% by 2020, 30% by 2030; created EEPS (4300 GWh reduction by 2030); allowed EPC contracting, public building benchmarking

2010

Comp.
 Bidding
 Framework
 Docket

Act 73: Created \$1.05 "Barrel Tax" for HCEI

Act 186, EV charging systems

2011

- Decoupling Docket
- Act: Customer sited generation is not "public utility"
- Act 10: Clarifies RPS includes RE delivered to utility from customer sited grid connected systems
- Act: Allows solar on better Ag lands

2012

- EV parking requirement, registration, and licensing; exemptions from parking fees and high occupancy vehicle lane restrictions
- exploration/development on state lands; exempts geothermal exploration from EA/EIS requirements

Regulatory Proceedings

- Intragovernmental Wheeling (opened in 2007)
- HECO Feed-in Tariff (opened in 2008)
- HECO Rule 14H (opened in 2010)
- Implementation of Reliability Standards (opened in 2011)
- Integrated Resource Planning (opened in 2012)

Hawaii's Energy Transformation Policies

2013

- Act 37 Authorizes PUC policy to accelerate retirement of utility fossil generation
- Act 211 Establishes regulatory financing structure for rate reduction bond financing for RE
- Act 261 Exempts landlords & lessors who install RE systems from definition of "public utility"
- Act 262 Wind energy facility decommissioning

2014

- Act 52, Act 55 Permits solar energy facilities on ag land
- Act 106 Solar energy devise roof warranty
- Act 107 Aligns barrel tax as a resource strategy for the state's 2030 clean energy goals
- Act 109 Amends PUC principles for the modernization of the electric grid
- Act 164 State Building Code (modifies, revises and clarifies)

2015

- Act 97 100% RPS (electricity sector) by 2045
- Act 98 Establishes a Hydrogen Implementation Authority
- Act 99 Requires the University of Hawaii to become a net zero user of energy
- Act 100 Community-based renewable energy program
- Act 185 Applies barrel tax to other fossil fuels
- Act 201 On-Bill Program

Examples of Reducing Energy Demand

•DOE Awarded DBEDT \$9.5 million in Energy Efficiency and Conservation Block Grant Funds

2008

- Waikiki Resort Hotel upgrades chiller plants and cooling towers
- Honolulu Academy of Arts begins EE project
- Honblue retrofits cut usage by 20 percent

 Castle Med completes \$2.3M EE upgrades

2012

- Aiea H.S. installs solar PVs.
- •Honolulu Museum of Art \$1.5M EE
- Hawaii Energy,
 Forest City
 launch Energy
 Smart Initiative

2011

State launches \$34M
 Capital District project

2009

- PUC awards \$38M contract to SAIC for Utility EE programs
- DOT signs PPAs for 7 PV systems

2010 • 15 Kauai schools get solar PV systems

- Navy invests \$2.2M solar thermal at Pearl Harbor, Hickam
- State DPS invests \$25.5 million in retrofits
- UH Community College system plans \$32.8 million EE investment

Hawaii Natural Energy Institute

Affecting Change on Six Isolated Grids

5MW

MOLOKAI

RPS Targets 30% by 2020 70% by 2040 100% by 2045

FORMIBADLE CHALLENGES

- >70% of energy use on Oahu
- No interconnections between islands
- Resource and population not co-located
- Land availability, community acceptance, and permitting remain significant hurdles

Meeting RPS goals requires innovation and community commitment

KAHOOLAWE

MAUI

Capacity Additions -Quadrennial Energy Review

(2nd Installment)

Notes: Additions exclude coal-to-natural gas or biomass conversions.

Source: IHS and ABB Velocity Suite © 2016 IHS

Declining Cost Curves for Renewable Energy

Source: Lazard Ltd.

Levelized Costs for RE & Storage – US / World

Source: Lazard Ltd.

Recent PV Plus Storage PPAs in Hawaii

Project name	Island	Developer	Size	Storage	Cost per KWh
Waikoloa Solar	Hawaii	AES	30 MW	120 MWh	\$0.08
Hale Kuawehi	Hawaii	Innergex	30 MW	120 MWh	\$0.09
Kuihelani Solar	Maui	AES	60 MW	240 MWh	\$0.08
Paeahu Solar	Maui	Innergex	15 MW	60 MWh	\$0.12
Hoohana	Oahu	174 Power Global	52 MW	208 MWh	\$0.10
Mililani I Solar	Oahu	Clearway	39 MW	156 MWh	\$0.09
Waiawa Solar	Oahu	Clearway	36 MW	144 MWh	\$0.10

1y **\$0.14** Oil:

5y **\$0.16** - max **\$0.25**

Source: Richard Wallsgrove

On Renewable Integration...

THE WALL STREET JOURNAL.

there's no better place to look than Hawaii

Tax Incentives – Credits (USA / Hawaii)

Federal Energy Credit

30 Percent Credit on Qualifying Assets

- Nonrefundable
- Reducing in Future Years
 26% in 2020, 22% in 2021 and 10% in 2022

Hawaii Renewable Generation Credits

Hawaii Renewable Energy Technologies Income Tax Credit ("RETITC")

- 35 Percent Credit of the Actual Cost or the Cap Amount
- 24.5 Percent (Refundable) Credit
 Results in 30 Percent Reduction in the Eligible Credit and Effects the Cap

Possible Federal Income Recognition of Credits

Source: Schlissel + Associates LLC

(data from the Solar Energy Industries Association)

State	Cumulative Solar Electric Capacity per Capita (Watts/ person)	Rank	Solar Electric Capacity Installed During 2013 per Capita (Watts/ person)	Rank	Cumulative Solar Electricity Capacity (MW)	Rank	Total Solar Electricity Capacity Installed During 2013 (MW)	Rank
Arizona	275	1	109	1	1,821	2	724	2
Hawaii	243	2	107	2	341	7	150	6
Nevada	161	3	17	9	450	5	47	12
California	148	4	72	3	5,661	1	2,760	1
New Jersey	136	5	27	6	1,211	3	240	5
New Mexico	113	6	22	7	236	10	46	13
Delaware	82	7	14	10	53	21	9	23
Massachusetts	66	8	37	4	442	6	244	4
Colorado	63	9	12	11	331	8	61	10
North Carolina	57	10	33	5	557	4	328	3

Hawaiian Electric Companies – 2018 RPS Status Report

22% HECO (Oahu – Honolulu)

44% HELCO (Hawaii Island)

38% MECO (Maui, Molokai, Lanai)

Next Steps – Support Policy with Analysis

Analysis to Inform State Energy Policy & Utility Operations

- Analyses cited in Utility Commission decisions and numerous recommendations have been adopted
- New methods to assess system risk across all hours of year
- Integrating analyses across multiple time-scales to better understand high-penetration renewable grids

Hawaii as a Test Bed – Strategic Alliances

- South Korea and Hawaii 2015 MOU between Hawaii and Korea Institute of Energy Technology Evaluation and Planning (KETEP) to cooperate in the development of green energy technology
- HNEI and SNU assembled a team that received KETEP
 International Energy Collaborative R&D Program grant to conduct a
 feasibility study on microgrid platforms at 3 potential Hawaii sites.
- HNEI formed a six-party alliance to apply for the 2nd step via
 KETEP Mission Innovation grant funding
- The alliance won a KETEP grant to build advanced microgrid in Hawaii in a project that concludes in June of 2021.

Mission Innovation - Hawaii-Korea Microgrid

Deployment and Operation of "Smart" Microgrid Featuring Distributed Resources with Resilience in Off-grid Events

- Apply <u>big data / reinforcement learning</u> based prediction and optimization algorithms
- Development of <u>system scalability</u> through local EMS interworking
- Design & deploy power trading model and service

- Coordinated control for DG, diesel back-up generator, PV+ESS to maximize off-grid operation time
- Real-time Simulator (RTDS) based system simulation and algorithm verification
- Includes microgrid optimal design methodology

- Microgrid system design
 on-site engineering for
 PV, ESS, Control
 system
- Install & operate Albased cloud/local EMS
- Analysis of empirical results on economical value and system stability

- Integration of <u>law and</u> regulation in Hawaii
- <u>Guidelines</u> for microgrid business models
- Creation of a replicable, localized <u>new energy</u> service model

Supporting Hawaii's drive for 100% renewable energy through deployment of locally optimized microgrid operation technology

Final Note: Policy & Technology Transfer

Asia Pacific Regional Energy Systems Assessment (APRESA)

- Multiyear funding by the Office of Naval Research to develop partnerships with international partners including universities and other research organizations
- Objective is to enhance the reliability, stability, and resilience of the energy systems in select locations throughout the Asia-Pacific region.
- Take lessons learned from Hawaii experience to stimulate energy self sufficiency
- Focus on grid integration, fuels (i.e., biomass and biofuels), energy efficiency, water-energy nexus, and policy.
- Helping Vietnam develop its RPS policy & implementation plan, largely based on Hawaii's experience.

Thank you!

Mark B. Glick Specialist on Energy Policy 01-808-956-2339 mbglick@hawaii.edu www.hnei.hawaii.gov