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OBJECTIVE AND SIGNIFICANCE: This project aims 

at the development of approaches, tools, and 

protocols to improve batteries diagnosis and 

prognosis via non-invasive in-operando techniques. 

 

BACKGROUND: Battery diagnosis and prognosis is a 

difficult task. Lithium-ion batteries (LiB) are much 

more complex than traditional batteries and their 

degradation is path dependent as different usages 

(current, temperature, SOC range, SOC window, etc.) 

will lead to different type of degradation. In addition, 

since large battery packs are composed of thousands 

of cells, the use of complex models or a multitude of 

sensors for each cell is precluded. 
 

Traditionally, battery diagnosis is handled via two 

opposite approaches. The academic route aims for 

maximum accuracy and achieves it by inputting a lot 

of resources. The second route – the one usually used 

on deployed systems – uses as little resources as 

possible and must not be destructive. As a result, it is 

ineffective in predicting the true state of health. 
 

This assessment of state of the art led HNEI to define 

and develop a third industry-compatible intermediate 

route to reach an accurate diagnosis with cost-

effective and non-destructive methods, using only 

sensors already available in battery packs while 

requiring limiting computing power. 
 

HNEI developed a mechanistic modeling framework 

where a battery digital twin is built from individual 

electrode data and where the battery degradation is 

emulated by the scaling or the translation of one 

electrode versus the other. Using this framework, the 

voltage variations associated with the degradation 

mechanisms can be predicted. 
 

Machine learning and artificial intelligence are also 

starting to play a crucial role in diagnosing and 

prognosing batteries. However, their accuracy is 

limited by the little to no training data available to 

validate algorithms. To solve this issue, HNEI applied 

the mechanistic modeling approach to develop the 

first synthetic training datasets. Recent work 

highlighted the possible opportunistic diagnosis of 

battery usage for photovoltaic-connected batteries 

using models trained and validated on synthetic 

datasets. 

 

Research conducted for this project is completed in 

the PakaLi Battery Laboratory. 

 

PROJECT STATUS/RESULTS: This project is 

currently ongoing with three industrial collaborations 

on different aspects of the problem. A full suite of 

software and models were developed. The main 

model has been licensed by more than 125 

organizations worldwide. 
 

This work has also led to 45 publications, many of 

which are linked on the following pages, and one 

patent. 

 

Funding Source: Office of Naval Research; SAFT 
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