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Introduction and motivation

 Many uses of models in FC research and development:
 To evaluate hypotheses of physical behavior

 To run tests quickly and cheaply

 To take virtual measurements

 To design hardware and controls

 For model-based control and model-in-the-loop

 Unfortunately,

 Specialized models are needed for these tasks

 Model development is labor intensive

 Source code is not widely shared 
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Research gap

 PEMFC models are limited by:

 Range of operating conditions

 Reusability under different:

 Boundary conditions

 Physical configurations

 Fidelity:

 Dynamics

 Spatial resolution

 Dimensionality

 Phases

 Physical domains

 Second-order phenomena

 Computational performance
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Overview of research

Vision:  An open-source PEMFC model library suitable for 
many applications

1. Fidelity and flexibility:  How can we model all the 
relevant physical phenomena of FCs to support the 
analysis and design of PEMFC systems, inclusive of 
hardware and controls?

2. Model architecture:  How can the equations be 
structured so that they can be symbolically manipulated 
to improve computational speed and to allow 
linearization for control design?

3. Performance:  Which combinations of accuracy and 
speed can be achieved by adjusting fidelity?
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Outline

 Introduction and overview

 Related work

 Description of the model

 Sample results

 Contributions
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Physics-based vs. semi-empirical models

 Physics-based
 Usually Navier-Stokes via PDEs

 Bernardi and Verbrugge (1992) led to Kulikovsky (2003), Um 
and Wang (2004), and others

 Common due to advancements in CFD

 Still too slow for systems and controls 
 30 min. simulation time for a quasi-3D cell model (Kim, 2010)

 Semi-empirical
 Usually causal ODE or DAE

 Beginning from Springer et al. (1991)

 Fast simulation, suitable for dynamics

 Limited insight into physical behavior

 Not well-suited for design
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Additional classification by causality

7

Physics-based

Semi-empirical

Acausal

(declarative, 

physical-interaction, 

equation-based)

Causal

(imperative 

signal-flow,

sequential modular)



Hawaii Natural Energy Institute

Causal
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Acausal PEMFC models

 Rubio et al. (2005 & 2010)
 1D
 Isothermal
 No external thermal or 

chemical connectors
 No flow plates

 Davies and Moore (2007)
 Quasi-2D
 Lumped thermal

 McCain et al. (2008)
 1D

 Partitioned by species

 Blunier and Miraoui (2008)
 Quasi-2D
 Isobaric along channels
 Isothermal
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Outline

 Introduction and research overview

 Related work

 Description of the model

 Desired features

 Fundamentals

 Implementation

 Sample results

 Contributions
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Ideally, what would a FC model cover?

Goal: To support FC research and development
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 Dynamics 

 Spatial distributions

 Multiple dimensions

 Multiple phases

 Heat generation

 Thermal conduction and 
convection

 Fluid dynamics

 Multi-component diffusion

 Electro-osmotic drag

 Ohmic losses

 Electrode kinetics

 Effects of material 
characteristics
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Key architectural choices

 Physics-based

 Detail about why certain behavior is observed

 Modular

 Flexible cell architecture

 Combinations of various species, phases, and regions

 Object-oriented

 Reconfigurable 

 Flexible boundary conditions and assumptions (spatial 
resolution, dimensionality, included species, etc.)

 Acausal or equation-based
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Equation-based, object-oriented (EOO)
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Outline

 Introduction and research overview

 Related work

 Description of the model

 Desired features

 Fundamentals

 Implementation

 Sample results

 Contributions
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Conservation at the species level

 Problem: How do we formulate exact conservation 
equations for each region, regardless of the size, when 
species are included in dynamically-varying amounts?

 Approach: Conservation equations for material, 
momentum, and energy of each species individually, with 
explicit contributions of advection and diffusion

 Advection is direct rather than via PDE (material derivative)

Exact conservation guaranteed at every boundary

 Zero torque imposed directly on the diffusive shear forces 
rather than via constraint on shear strain

No nonlinear systems of equations
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Upstream discretization
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Profile along the transport axis

 When fluid is stagnant: central difference scheme

 As flow becomes infinite: upwind scheme

 Same as Patankar 
(1980) at midplane
and at Pe = 0

 No singularity at      
Pe = 0 

 Patankar solution 
was derived under 
assumption of zero 
net flow
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Coupled advection and diffusion

 Advection and diffusion are additive

 Rate of diffusion is independent of advection, but the property 
at the boundary depends on advection

 Diffusion is important during flow reversal (Pe  0)
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Stefan-Maxwell diffusion

 Background:  Many FC models use Stefan-Maxwell 
equations for binary diffusion:

 Nonlinear system of nspec equations

 Singular as written

 One equation (arbitrary choice!) is replaced with a bulk mass 
transport equation, or

 A term is added to each equation to consider drag with the solid 
(singular as Knudsen diffusion becomes negligible!) (Weber & 
Newman, 2005)

 
ij

ij

ji
n

ij
j

i

D

nn

T










spec

1

18



Hawaii Natural Energy Institute

Generalized Stefan-Maxwell diffusion framework

 Problem: How do we represent multi-component 
diffusion without nonlinear equations or singularities?

 Approach: Diffusive exchange of momentum rather than 
direct constraint on velocities

 Every phase of every species i has a mobility with respect to 
each connected node j

 This force is included in momentum balance

 Describes electrical resistance and electro-osmotic drag

 Also appropriate for thermal exchange (with change of 
variables)
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Diffusive exchange

 Nodes are added among species as needed

Number of 
species

Default 
connection

Binary

2

3

4

○ Node

● Species
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Advective exchange

 In the case of reactions and phase change, translational 
momentum and energy are exchanged via advection

 Intensive properties are those of the source
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Outline

 Introduction and research overview

 Related work

 Description of the model

 Desired features

 Fundamentals

 Implementation

 Sample results

 Contributions
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Overall goal

An open-source PEMFC model library suitable for many 
applications

1. Descriptive

2. Modular

3. Reconfigurable

4. Quick to simulate
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Structure of the model library

 Problem: How can we organize the library? 

 196 models, 428 functions, >26,000 lines of code

 Many levels of physical and software detail

 Approach: Object-oriented package hierarchy
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Physical interactions

 Problem: How can we best manage all the interactions 
among models?

 Up to 50 variables involved in a single layer interface

 Approach: Hierarchy of acausal connectors
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Novel application of efforts and flows

 Efforts and flows are usually power conjugates

 But also well-suited to:

 Dalton’s law of additive pressures

 Effort volume, flow pressure

 Amagat’s law of additive volumes

 Effort pressure, flow volume

 Another pair of opposites:
 Chemical diffusion of a species

 Effort potential, flow current

 Reaction equilibrium

 Effort reaction rate, flow stoichiometrically-weighted potentials 
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Natural units

Problem:

 Faraday constant appears in model of electrical but not chemical species 

  Difficulty in coding a general species

 FC data is often not written in SI units

  Entry is tedious and error-prone

Approach:

 Quantities written as the product of a number and a unit

 Units derived from universal physical constants 
 E.g.:  constant Q.Length m=10973731.568539*rad/R_inf "meter"; 

 Those constants can be given any value

 Gas and Faraday constants normalized to 1 and eliminated from model

27

Rydberg constant



Hawaii Natural Energy Institute

Adjustable fidelity

 Problem:  How can we create detailed models and 
simple, fast-simulating models from the same library?

 Approach:  

1. Index reduction

 States combined automatically when directly coupled, e.g.:

 Zero thermal resistance among species  same temperature for all

2. Modularity

 Some layers can be combined

3. Options to:

 Vary spatial resolution and dimensionality

 Apply assumptions—ideal gas, incompressible flow, etc.
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Object-oriented features

 Problem:  How can we implement all of the models 
systematically and without excessive redundancy?

 8 species, 2 fluid phases, 2 solid phases, 7 layers

 Approach:  Inheritance and instantiation

 1 base model for all species

 Species conditionally included

 Material characteristics in a replaceable package
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Phase model

 Contains interconnected species models
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Subregion model
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 Lowest level of spatial resolution
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Region model

 Represents layers of cell

 3D, rectilinear array of subregions
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Cell model

 Single-cell PEMFC

 Up to 3 dimensions, but quasi-2D by default
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Test stand model

 Applies boundary conditions to evaluate cell 
performance

 BCs are replaceable:

 Current or potential

 Heat flow rate or
temperature

 Air or pure O2

 And adjustable:

 Flow rates

 Humidities

 Outlet pressure
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Outline

 Introduction and research overview

 Related work

 Description of the model

 Sample results

 Contributions
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 Test stand with a single cell (1 segment down the 
channel) has:

 6887 variables (2749 time-varying)

 55 states

 No nonlinear systems of equations

 And takes:

 ~23 s to translate

 ~1.6 s to simulate a polarization curve (10 hrs of represented 
time) 

Modeling and simulation statistics
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Polarization curves under varying conditions

Temperature Pressure

 Trends are qualitatively correct, but significant 
quantitative differences; may be due to

 H2 cross over

 Transport behavior of the liquid
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Energy balance

 ORR activation dominates the loss



Hawaii Natural Energy Institute 39

Distributed temperature

 Temperatures up to ~5.5 K higher within cell due to heat 
generation (hottest in cathode CL)
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Oxygen partial pressure

 Roll-off at concentration limit
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Segmented cell

 Liquid not included

 31,990 variables (12,711 time-varying)

 Simulates in ~11 s
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Sinusoidal electrical load

 0.3 Hz

 Amplitude of 140 mA/cm2

 Offset of 80 mA/cm2
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Outline

 Introduction and research overview

 Related work

 Description of the model

 Sample results

 Contributions
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Contributions

 First acausal, physics-
based FC model 

 Highly modular, 
reconfigurable, and 
descriptive

 Possible extensions to other 
fluidic or electrochemical 
devices

 Novel equations which are 
consistent with 
fundamental transport 
theory

 Available online
 Google “FCSys”
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http://kdavies4.github.io/FCSys/
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