Equation-Based, Object-Oriented Fuel Cell Modeling

Kevin Davies

HiSERF

January 24, 2014

Introduction and motivation

Many uses of models in FC research and development:

- To evaluate hypotheses of physical behavior
- To run tests quickly and cheaply
- To take virtual measurements
- To design hardware and controls
- For model-based control and model-in-the-loop

Unfortunately,

- Specialized models are needed for these tasks
- Model development is labor intensive
- Source code is not widely shared

Research gap

PEMFC models are limited by:

- Range of operating conditions
- Reusability under different:
 - Boundary conditions
 - Physical configurations
- Fidelity:
 - Dynamics
 - Spatial resolution
 - Dimensionality
 - Phases
 - Physical domains
 - Second-order phenomena
- Computational performance

Overview of research

Vision: An open-source PEMFC model library suitable for many applications

- 1. Fidelity and flexibility: How can we model all the relevant physical phenomena of FCs to support the analysis and design of PEMFC systems, inclusive of hardware and controls?
- 2. <u>Model architecture</u>: How can the equations be structured so that they can be symbolically manipulated to improve computational speed and to allow linearization for control design?
- 3. <u>Performance</u>: Which combinations of accuracy and speed can be achieved by adjusting fidelity?

Outline

- Introduction and overview
- Related work
- Description of the model
- Sample results
- Contributions

Physics-based vs. semi-empirical models

Physics-based

- Usually Navier-Stokes via PDEs
- Bernardi and Verbrugge (1992) led to Kulikovsky (2003), Um and Wang (2004), and others
- Common due to advancements in CFD
- Still too slow for systems and controls
 - ▶ 30 min. simulation time for a quasi-3D cell model (Kim, 2010)

Semi-empirical

- Usually causal ODE or DAE
- Beginning from Springer et al. (1991)
- Fast simulation, suitable for dynamics
- Limited insight into physical behavior
- Not well-suited for design

Additional classification by causality

VS.

Acausal

Input/output

Assignments

Algorithms

Efforts/flows

Equations

Systems of equations

Acausal PEMFC models

- Rubio et al. (2005 & 2010)
 - 1D
 - Isothermal
 - No external thermal or chemical connectors
 - No flow plates

- Davies and Moore (2007)
 - Quasi-2D
 - Lumped thermal

- Blunier and Miraoui (2008)
 - Quasi-2D
 - Isobaric along channels
 - Isothermal

- McCain et al. (2008)
 - 1D
 - Partitioned by species

Outline

- Introduction and research overview
- Related work
- Description of the model
 - Desired features
 - Fundamentals
 - Implementation
- Sample results
- Contributions

Ideally, what would a FC model cover?

Goal: To support FC research and development

- Dynamics
- Spatial distributions
- Multiple dimensions
- Multiple phases
- Heat generation
- Thermal conduction and convection

- Fluid dynamics
- Multi-component diffusion
- Electro-osmotic drag
- Ohmic losses
- Electrode kinetics
- Effects of material characteristics

Key architectural choices

Physics-based

Detail about why certain behavior is observed

Modular

- Flexible cell architecture
- Combinations of various species, phases, and regions
- ⇒ Object-oriented

Reconfigurable

- Flexible boundary conditions and assumptions (spatial resolution, dimensionality, included species, etc.)
- ⇒ Acausal or equation-based

Equation-based, object-oriented (EOO)

Outline

- Introduction and research overview
- Related work
- Description of the model
 - Desired features
 - Fundamentals
 - Implementation
- Sample results
- Contributions

Conservation at the species level

- Problem: How do we formulate exact conservation equations for each region, regardless of the size, when species are included in dynamically-varying amounts?
- Approach: Conservation equations for material, momentum, and energy of each species individually, with explicit contributions of advection and diffusion
 - Advection is direct rather than via PDE (material derivative)
 - ⇒ Exact conservation guaranteed at every boundary
 - Zero torque imposed directly on the diffusive shear forces rather than via constraint on shear strain
 - ⇒ No nonlinear systems of equations

Upstream discretization

$$T_n, \dot{Q}_n \longrightarrow Pe = IR \longrightarrow T_p, \dot{Q}_p$$

$$R\dot{Q}_i = (T_i - T)(1 + e^{\mp Pe/2})$$

- No nonlinear systems of equations
- Also applied to material and transverse translational momentum

Profile along the transport axis

- When fluid is stagnant: central difference scheme
- As flow becomes infinite: upwind scheme

- Same as Patankar (1980) at midplane and at Pe = 0
- No singularity atPe = 0
- Patankar solution was derived under assumption of zero net flow

Coupled advection and diffusion

- Advection and diffusion are additive
- Rate of diffusion is independent of advection, but the property at the boundary depends on advection
- ▶ Diffusion is important during flow reversal ($Pe \approx 0$)

Stefan-Maxwell diffusion

<u>Background</u>: Many FC models use Stefan-Maxwell equations for binary diffusion:

$$\frac{\nabla \mu_i}{T} = \sum_{\substack{j=1 \ j \neq i}}^{n_{\mathrm{spec}}} \frac{n_i n_j}{D_{ij}} \left(\phi_j - \phi_i \right)$$

- Nonlinear system of n_{spec} equations
- Singular as written
 - One equation (arbitrary choice!) is replaced with a bulk mass transport equation, or
 - A term is added to each equation to consider drag with the solid (singular as Knudsen diffusion becomes negligible!) (Weber & Newman, 2005)

Generalized Stefan-Maxwell diffusion framework

- Problem: How do we represent multi-component diffusion without nonlinear equations or singularities?
- Approach: Diffusive exchange of momentum rather than direct constraint on velocities
 - Every phase of every species i has a mobility with respect to each connected node j

$$\mu_{ij} \dot{m} \Phi_i = \sum_{j=1}^{n_{\text{nodes}}} N_i (\phi_j - \phi_i)$$

- This force is included in momentum balance
- Describes electrical resistance and electro-osmotic drag
- Also appropriate for thermal exchange (with change of variables)

Diffusive exchange

Nodes are added among species as needed

Number of species	Default connection	Binary
2	●	• - \\-\-\-\-
3		
4		

- Node
- Species

Advective exchange

- In the case of reactions and phase change, translational momentum and energy are exchanged via <u>advection</u>
- ▶ Intensive properties are those of the <u>source</u>

Outline

- Introduction and research overview
- Related work
- Description of the model
 - Desired features
 - Fundamentals
 - Implementation
- Sample results
- Contributions

Overall goal

An open-source PEMFC model library suitable for many applications

- Descriptive
- 2. Modular
- 3. Reconfigurable
- 4. Quick to simulate

Structure of the model library

- Problem: How can we organize the library?
 - ▶ 196 models, 428 functions, >26,000 lines of code
 - Many levels of physical and software detail
- Approach: Object-oriented package hierarchy

Physical interactions

- Problem: How can we best manage all the interactions among models?
 - Up to 50 variables involved in a single layer interface
- Approach: Hierarchy of acausal connectors

Novel application of efforts and flows

- Efforts and flows are usually power conjugates
- But also well-suited to:
 - Dalton's law of additive pressures
 - ▶ Effort volume, flow pressure
 - Amagat's law of additive volumes
 - Effort pressure, flow volume
- Another pair of opposites:
 - Chemical diffusion of a species
 - Effort potential, flow current
 - Reaction equilibrium
 - ▶ Effort reaction rate, flow stoichiometrically-weighted potentials

Natural units

Problem:

- Faraday constant appears in model of electrical but not chemical species
 - ▶ ⇒ Difficulty in coding a general species
- FC data is often not written in SI units
 - \Rightarrow Entry is tedious and error-prone

Approach:

- Quantities written as the product of a number and a unit
- Units derived from universal physical constants
 - E.g.: constant Q.Length m=10973731.568539*rad/R_inf "meter";
 Rydberg constant
- Those constants can be given any value
- Gas and Faraday constants normalized to 1 and eliminated from model

Adjustable fidelity

Problem: How can we create detailed models and simple, fast-simulating models from the same library?

Approach:

- Index reduction
 - States combined automatically when directly coupled, e.g.:
 - ightharpoonup Zero thermal resistance among species \Rightarrow same temperature for all

2. Modularity

- Some layers can be combined
- 3. Options to:
 - Vary spatial resolution and dimensionality
 - Apply assumptions—ideal gas, incompressible flow, etc.

Object-oriented features

- Problem: How can we implement all of the models systematically and without excessive redundancy?
 - ▶ 8 species, 2 fluid phases, 2 solid phases, 7 layers
- Approach: Inheritance and instantiation

- 1 base model for all species
- Species conditionally included
- Material characteristics in a replaceable package

Phase model

Contains interconnected species models

Subregion model

Subregion

Lowest level of spatial resolution

Region model

Region

- Represents layers of cell
- ▶ 3D, rectilinear array of subregions

Cell model

Assembly

- Single-cell PEMFC
- ▶ Up to 3 dimensions, but quasi-2D by default

Test stand model

Applies boundary conditions to evaluate cell

performance

- BCs are replaceable:
 - Current or potential
 - Heat flow rate or temperature
 - Air or pure O₂
- And adjustable:
 - Flow rates
 - Humidities
 - Outlet pressure

Outline

- Introduction and research overview
- Related work
- Description of the model
- Sample results
- Contributions

Modeling and simulation statistics

- Test stand with a single cell (1 segment down the channel) has:
 - ▶ 6887 variables (2749 time-varying)
 - ▶ 55 states
 - No nonlinear systems of equations
- And takes:
 - ~23 s to translate
 - ~1.6 s to simulate a polarization curve (10 hrs of represented time)

Polarization curves under varying conditions

Temperature

<u>Pressure</u>

- Trends are qualitatively correct, but significant quantitative differences; may be due to
 - ▶ H₂ cross over
 - Transport behavior of the liquid

Energy balance

ORR activation dominates the loss

Energy Balance Baseline Conditions @ 1.5 A/cm²

Distributed temperature

▶ Temperatures up to ~5.5 K higher within cell due to heat generation (hottest in cathode CL)

Oxygen partial pressure

Roll-off at concentration limit

Segmented cell

- Liquid not included
- ▶ 31,990 variables (12,711 time-varying)
- Simulates in ~11 s

Sinusoidal electrical load

- ▶ 0.3 Hz
- Amplitude of 140 mA/cm²
- Offset of 80 mA/cm²

Outline

- Introduction and research overview
- Related work
- Description of the model
- Sample results
- Contributions

Contributions

- First acausal, physicsbased FC model
 - Highly modular, reconfigurable, and descriptive
 - Possible extensions to other fluidic or electrochemical devices
- Novel equations which are consistent with fundamental transport theory

Available online

Google "FCSys"

Funding

- Robert G. Shackelford Fellowship from the Georgia Tech Research Institute
- Presidential Fellowship from the George W. Woodruff School of Mechanical Engineering
- ▶ Grant #N00014-04-0682 from the Office of Naval Research

References

- 1. D. M. Bernardi and M. W. Verbrugge, "A Mathematical Model of the Solid Polymer Electrolyte Fuel Cell," *J. Electrochem. Soc.*, 139 (1992): 2477–2491.
- 2. K. L. Davies and R. M. Moore "Object-Oriented Fuel Cell Model Library", *Electrochem. Soc. T.*, 11 (2007), 797–808.
- G.-S. Kim, P. C. Sui, A. A. Shah, and N. Djilali, "Reduced-Dimensional Models for Straight-Channel Proton Exchange Membrane Fuel Cells," *J. Power Sources*, 195 (2010): 3240–3249.
- 4. A. A. Kulikovsky, "Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells," *J. Electrochem. Soc.*, 150 (2003): 1432–1439.
- B. A. McCain, A. G. Stefanopoulou, and K. R. Butts, "On Controllability and Observability of Linearized Liquid Water Distributions inside a PEM Fuel Cell," *Proc. Dynamic Systems and Control Conf.*, Oct. 2008, DSCC2008-2155.
- 6. S. V. Patankar, *Numerical Heat Transfer and Fluid Flow*, Taylor & Francis, 1980.
- 7. M. A. Rubio, A. Urquia, L. González, D. Guinea, and S. Dormido, "FuelCellLib: A Modelica Library for Modeling of Fuel Cells", *Proc. 4th Int. Modelica Conf., Modelica Association*, Mar. 2005.
- 8. M. A. Rubio, A. Urquia, and S. Dormido, "Dynamic Modelling of PEM Fuel Cells Using the FuelCellLib Modelica Library", *Math. Comp. Model. Dyn.*, 16 (2010): 165–194.
- 9. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer Electrolyte Fuel Cell Model," *J. Electrochem. Soc.*, 138 (1991): 2334–2342
- S. Um and C.-Y. Wang, "Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells," *J. Power Sources*, 125 (2004): 40–51.
- 11. A. Z. Weber and J. S. Newman, "Modeling Transport in Polymer-Electrolyte Fuel Cells," *Chem. Rev.*, 104 (2004): 4679–4726.

