Next Generation NZE: Inheriting the Good Genes

James Maskrey, UH Hawaii Natural Energy Institute
Sara Cerri, UH Hawaii Natural Energy Institute
Eileen Peppard, UH Hawaii Sea Grant, University of Hawaii

ACEEE 2018 Summer Study on Energy Efficiency in Buildings
Pacific Grove, CA
August 12-17, 2018
Objectives for today

• Compare the performance of two generations of NZE structures: **10 to 47% improvement**

• Compare the performance of **innovative energy saving control strategies**

• Demonstrate **user preference & behavior on energy consumption**
Project FROG: “Flexible Response to Ongoing Growth”

Buildings area: 1,280 sf

1st generation - Frog

Ilima Intermediate School, Ewa Beach, Oahu (2010)

Buildings area: 1,440 sf

2nd generation - Frog

University of Hawaii at Manoa Campus, Oahu (2015-2016)

Designed to actively engage users while utilizing partially automated controls

Middle and high school classrooms

K-12 and university classrooms
Features to manage energy and comfort

Energy Efficient Design
- Orientation, insulation, high performance glazing

Lighting
- Daylight harvesting LED fixtures w/ O.S.
- Optional during day

Windows and daylighting
- Operable windows north and south. High clerestory windows

Ceiling Fans
- Air movement across skin
- Standalone or augments the HVAC

Air Conditioning
- Designed for mixed mode, higher delivery temp; 1 hour *ON-DEMAND* timer/thermostat
- AC will cycle to OFF between classes and not run unless activated
Comparative results

<table>
<thead>
<tr>
<th>Location</th>
<th>Average EUI (kBtu/sf-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st generation</td>
<td>17.46</td>
</tr>
<tr>
<td>2nd generation</td>
<td>9.24</td>
</tr>
</tbody>
</table>

Overall Savings: 47.8%

- Ilima: 31.83 kBtu/sf
- Kawaiwiki East: 14.79 kBtu/sf
- Kawaiwiki West: 5.77 kBtu/sf
- UHM Frog 1: 10.37 kBtu/sf
- UHM Frog 2: 8.11 kBtu/sf
2nd generation Frogs

Designed to actively engage users integrating partially automated controls:

- **Lighting** – daylight harvesting sensors
- **HVAC** – On-Demand control
- **Ceiling fans** – 100% manual
Daylight harvesting & lighting controls

• Occupancy Sensors

• Daylight harvesting system
 • Energi Savr Node™ lighting management system by Lutron
 • 2 sensors per classroom

• Manual override for 100% daylighting
Energy Savings: Lighting
Actual energy used & percentage of savings

FINDINGS

- 457 kWh with no controls & lights at full brightness from 7:00am to 7:00pm

- The most effective intervention is manual
HVAC Controls

• Mixed Mode
• On-Demand HVAC control
 • ON: Manual override only
 • OFF: Auto-off in 1 hour

• Temperate climate
• Natural ventilation often sufficient
• Class schedules vary
• Ceiling fans augment ventilation to bring into comfort zone
Decisions: To cool or not to cool?

Ex. 1

FROG 1

Mon, Aug 28

Occupancy hours:
7.30am-12.30pm;
1:45pm-4:15pm

FROG 2

Mon, Aug 28

Occupancy hours:
7.30am-12.30pm;
1:45pm-4:15pm;
4:30pm-7:00pm
Decisions: To cool or not to cool?

Ex. 2

The “Awareness” Premium
Conventional vs On-Demand HVAC control

FINDINGS

- 84% savings over conventional thermostat
- Usage floats with existing class schedules and outdoor conditions
Tragedy of the commons

“Individual users, acting independently and rationally according to their own self-interest, behave contrary to the common good of all users.”

- Garrett Hardin -
Training Users:

“What the heck is *Mixed Mode* anyway?”

- Familiarize with controls
- Provide real time feedback
- Embed NZE as a “culture”
Decision:
Do we need the lights?

Weekly average lighting power for afternoon class session for occupied hours
Weekly average of HVAC power for morning class for occupied hours
Ex. 2.1 Air conditioning

Decision:
Do we need the A/C?

Ave. Weekly HVAC energy (kWh) for single class period
Conclusions and Recommendations

• Balance user engagement and sense of control with automation
 • Training, education and awareness

• Keep it Simple...
 • Offer cues and *clarity*

• Predictive modeling is useful during design ...
 • But for that pesky behavior

Lessons Learned:
Complex Interactions Impact Performance
Next Generation NZE:
Inheriting the Good Genes

James Maskrey, UH Hawaii Natural Energy Institute
Sara Cerri, UH Hawaii Natural Energy Institute
Eileen Peppard, UH Hawaii Sea Grant, University of Hawaii

Contact: Jim Maskrey
University of Hawaii / Hawaii Natural Energy Institute
jmaskrey8@gmail.com
Engagement

Tragedy of the commons

Individual users, acting independently and rationally according to their own self-interest, behave contrary to the common good of all users.

-Garrett Hardin

Thank you

• Automated or manual controls?
• Should performance be dependent upon user awareness?