Kinetic enhancement of bulk, direct hydrogenation of MgB$_2$ to Mg(BH$_4$)$_2$ in presence of modifiers

G. Severa, C. M. Jensen, C. Sugai and S. Kim
University of Hawaii at Mānoa

B. Wood, S. Kang and S. Wan
Lawrence Livermore National Laboratories

J. White and V. Stavila
Sandia National Laboratories

T. Gennett, N. Leick and M. Martinez
National Renewable Energy Laboratories

16th International Symposium on Metal-Hydrogen Systems (MH2018)
Oct. 28 – Nov. 3, 2018
Guangzhou, China
Outline

• Motivation
• Background
• Approach
• Results
• Summary
Motivation: Potential of Mg(BH$_4$)$_2$/MgB$_2$ System

High hydrogen storage capacity of pure Mg(BH$_4$)$_2$/MgB$_2$ system.
- Theoretical Gravimetric density: 14.8 wt% H$_2$.

Potential for practical onboard reversible hydrogen storage
- $\Delta H_{\text{dehyd}} = 40\text{-}50 \text{kJ/mol H}_2$
 \Rightarrow plausibility of re-hydrogenation of MgB$_2$ to Mg(BH$_4$)$_2$ at moderate temperatures and pressures.
Background: Reversible H₂ cycling of MgB₂ to Mg(BH₄)₂

\[\text{MgB}_2 \xrightarrow{900 \text{ atm H}_2, 400 \, ^\circ\text{C}} \text{Mg(BH}_4\text{)}_2 \]

Confirmed by XRD, IR, MAS ¹¹B NMR

Demonstrated 11.4 wt % H₂ release from the high pressure synthesized Mg(BH₄)₂

Rönnebro, Severa and Jensen, USPTO, **2012**, Patent 8147788.
Background: Reversible Dehydrogenation of Mg(BH$_4$)$_2$ to MgB$_2$

1. Dehydriding Mg(BH$_4$)$_2$ doped with 5mol% TiF$_3$/ScCl$_3$

MgB$_2$ formed with release of up to 14 wt% H$_2$

2. Rehydrogenation at 900 bar and 390 $^\circ$C

Rehydrogenation: 49% for doped sample and 66% for undoped sample observed.

Background: Recent Advances in Mg(BH$_4$)$_2$ Research

- Recent improvements in magnesium borohydride research.

<table>
<thead>
<tr>
<th>Dehydrogenation Product</th>
<th>Hydrogenation</th>
<th>Dehydrogenation</th>
<th>Cycling wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temp °C</td>
<td>P atm</td>
<td>time h</td>
</tr>
<tr>
<td>MgB$_2$ (HP)</td>
<td>>400</td>
<td>>900</td>
<td>108</td>
</tr>
<tr>
<td>MgB$_2$ (reactive ball milling/HT-HP)</td>
<td>/400</td>
<td>10/400</td>
<td>10/24</td>
</tr>
<tr>
<td>Mg(B$_3$H$_8$)$_2$(THF)$_x$/2MgH$_2$</td>
<td>200</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Mg(B$_3$H$_8$)$_2$/2MgH$_2$</td>
<td>250</td>
<td>120</td>
<td>48</td>
</tr>
<tr>
<td>Mg(B${10}$H${10}$)$_2$(THF)$_x$/4MgH$_2$/X</td>
<td>200</td>
<td>50</td>
<td>2</td>
</tr>
</tbody>
</table>

Mg(BH$_4$)$_2$ ammoniates

- Improved kinetics on dehydrogenation even though, NH$_3$, very stable BN products formed.

Mg(BH$_4$)$_2$ and Mg borane etherates

- Improved H$_2$ cycling kinetics on ether coordination, lower H$_2$ capacity.
- Strong coordination of ethers to magnesium at high temp.

Current state-of-the-art:

- Better H$_2$ cycling kinetics (lower pressures and temperatures).
- Lower gravimetric H$_2$ storage capacity.

Efforts show plausibility of greatly enhancing kinetics of Mg borohydride materials.

Ether activated MgB$_2$: Potential for Practical Hydrogen Storage Properties

HYPOTHESIS: Ether coordination or incorporation can perturb the MgB$_2$ structure resulting in a destabilized MgB$_2$ material with improved hydrogen storage properties.

MgB$_2$ + Ether \rightarrow Ether activated/modified MgB$_2$

<table>
<thead>
<tr>
<th>Mols ether/ Mol MgB$_2$ (x)</th>
<th>0.70</th>
<th>0.40</th>
<th>0.20</th>
<th>0.10</th>
<th>0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt % Hydrogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgB$_2$(OMe$_2$)$_x$</td>
<td>9.4</td>
<td>11.1</td>
<td>12.8</td>
<td>13.8</td>
<td>14.3</td>
</tr>
<tr>
<td>MgB$_2$(THF)$_x$</td>
<td>7.7</td>
<td>9.7</td>
<td>11.8</td>
<td>13.2</td>
<td>14.0</td>
</tr>
<tr>
<td>MgB$_2$(OCH$_2$Me$_2$)$_x$</td>
<td>7.6</td>
<td>9.6</td>
<td>11.7</td>
<td>13.1</td>
<td>14.0</td>
</tr>
<tr>
<td>MgB$_2$(Dioxane)$_x$</td>
<td>7.0</td>
<td>9.0</td>
<td>11.3</td>
<td>12.8</td>
<td>13.8</td>
</tr>
<tr>
<td>MgB$_2$(polyether)$_x$</td>
<td></td>
<td></td>
<td></td>
<td>>12</td>
<td>>12</td>
</tr>
</tbody>
</table>

Hypothesis Validation

- Lower MgB$_2$ hydrogenation temperature.
- Lower MgB$_2$ hydrogenation pressure.
- Increase MgB$_2$ hydrogen sorption rates.

Potential to improve practical hydrogen storage properties of MgB$_2$/Mg(BH$_4$)$_2$ system.
Experimental Approach: Synthesize, Characterize and Hydrogenate Modified MgB$_2$ Materials

A. Synthesize of modified MgB$_2$ by reactive ball milling and heat treatment approaches:
 1. Syntheses from dehydrogenation reactions of Mg borane etherates and metal hydrides.
 2. Syntheses from direct reactions of MgB$_2$ with additives/modifiers.

B. Hydrogenation reactions: <1000 bars, <400 °C and ≤ 72 hrs. [UH, SNL]

C. Characterizations: FTATR, TGA-DSC, XRD, NMR, TPD-Mass Spec. [UH, NREL, SNL, PNNL, LLNL]

D. Theoretical Studies: HyMARC: [LLNL]
Computational Approach: *Ab Initio* Molecular Dynamic Simulations

Ab initio molecular dynamics for chemistry and coordination analysis

Direct simulation of solute-solvent interactions, investigation of formation and/or dissociation of chemical bonds, charge transfer

Ab initio Molecular Dynamic Simulations to identify perturbation of MgB$_2$.

LLNL: Dr. B. Wood, Dr. S. Kang and Dr. S. Wan
Orientation-dependent reactivity of MgB$_2$ with THF

Results: Molecular Dynamic Simulations

EDGE PLANE

Reactive MgB$_2$ edge plane decomposes THF into ethylene etc.

BASAL PLANE

Addition of THF (800 K)

Ethers destabilize surface boron sheet and create structural defects.

Origin of structure deformation?
Results: Syntheses of Ether Activated MgB$_2$

Preparation By Ball Milling Approach

MgB$_2$ + ether $\xrightarrow{400\text{ rpm}}$ MgB$_2$-ether

Ether: tetrahydrofuran, dioxane, tetraglyme, triglyme, dioxalane

MgB$_2$ peaks decrease for THF and Triglyme samples.
- Ether role in decreasing MgB$_2$ crystallinity.

NMR, XRD and FTATR inconclusive in directly confirming presence of sub-stoichiometric amounts of ether.

11B MAS-NMR at 10 kHz.

- MgB$_2$ (97.4 ppm)
- MgB$_2$-THF (97.8 ppm)

Solid State 11B NMR indicates presence of MgB$_2$
Results: Lowered Hydrogenation Temperature of MgB$_2$

MgB$_2$-THF + H$_2$ → MgB$_2$-THF → 1000 bar 300 °C, 72 hrs → Magnesium borohydride species

FIRST TIME hydrogenation of BULK MgB$_2$ to Mg(BH$_4$)$_2$ at 300 °C

Significant hydrogenation confirmed for the FIRST TIME For Mg(BH$_4$)$_2$ at 300 °C

Typical Mg(BH$_4$)$_2$ DSC profile

Lowering of temperature of bulk MgB$_2$ hydrogenation to 300 °C.
Vastly improved kinetics of hydrogenation
FTIR and XRD of hydrogenated MgB$_2$-THF shows typical intense Mg(BH$_4$)$_2$ stretches at 2260 and 1240 cm$^{-1}$.
Results: Solution 11B NMR of Hydrogenated MgB$_2$-THF

Hydrogenated MgB$_2$-THF Prepared by Ball Milling Approach

MgB$_2$-THF + H$_2$ $\xrightarrow{1000 \text{ bar}, \text{300} \, ^\circ\text{C}, \text{72 hrs}}$ Magnesium borohydride species

11B NMR also directly confirmed Mg(BH$_4$)$_2$ formation
Results: Hydrogenation of MgB$_2$-THF at 700 bar & 300 °C

MgB$_2$-THF + H$_2$ $\xrightarrow{700 \text{ bar} \ 300 \degree \text{C}, \ 72 \text{ hrs}}$ Magnesium borohydride

FIRST TIME hydrogenation of MgB$_2$ to Mg(BH$_4$)$_2$ at 300 °C and 700 bars

Hydrogen uptake is not a function of ball milling time but due to THF effects

Comparison with MgB$_2$-THF BM hydrogenated at 300 °C and 1000 bars

1H Solution NMR: Qualitative evidence of simultaneous lowering of MgB$_2$ hydrogenation temperature and pressure by THF

Simultaneous lowering of hydrogenation temperature and pressure of a MgB$_2$ material to Mg(BH$_4$)$_2$
Results: MgB$_2$-THF-X Hydrogenation Studies

First time hydrogenation of bulk MgB$_2$ to Mg(BH$_4$)$_2$ at 300 °C! and 700 bars!

\[
\text{MgB}_2\text{-THF-X} + \text{H}_2 \xrightarrow{700 \text{ bar}, 300 \degree\text{C}} \text{Magnesium borohydride}
\]

Potential of cooperative effects: THF-X additive combination enhanced H$_2$ uptake of MgB$_2$ system.

11B Solution NMR in D$_2$O/THF

- MgB$_2$-THF-X1 BM
- MgB$_2$-THF-X2 BM
- MgB$_2$-THF-X3 BM

TGA mass loss (%) up to <600 °C for samples H$_2$ treated at 300 °C, 700 bars & 72 hours

Vastly improved kinetics of hydrogenation of bulk MgB$_2$ at 300 °C! and 700 bars!
Results: MgB₂-X Hydrogenation Studies

First time hydrogenation of MgB₂ to Mg(BH₄)₂ at 300 °C! and 700 bars! in absents of ether!

\[
\text{MgB}_2{-X} + \text{H}_2 \xrightarrow{\text{700 bar} \atop \text{300 °C}} \text{Magnesium borohydride}
\]

THF “like effects” on MgB₂, observed with other additives!!!

Expansion of MgB₂ perturbation hypothesis beyond ether incorporation

Potential new pathways for improving kinetics of MgB₂ hydrogenation.
Results: IR Analyses of Hydrogenated Samples

FT-ATR analyses of hydrogenated MgB$_2$-X3-THF and MgB$_2$-X2 samples

Pre hydrogenated samples: (A) MgB$_2$-THF-X3 and (B) MgB$_2$-X2;
Post hydrogenated samples (700 bar, 300 °C): (C) MgB$_2$-THF-X3 and (D) MgB$_2$-X2.

Typical Mg(BH$_4$)$_2$ vibrations in the 2200-2300 cm$^{-1}$ and 1200-1300 cm$^{-1}$ region are observed after hydrogenation.
Results: TPD Analyses of Evolved Gases

Analyses of gases evolved on heat treatment of MgB$_2$-THF-X3 and MgB$_2$-X2

<table>
<thead>
<tr>
<th>Sample</th>
<th>TPD H$_2$ wt loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgB$_2$-X2 (#7) [Post-Hyd]</td>
<td>5.2</td>
</tr>
<tr>
<td>MgB$_2$-THF-X3 (#1) [Post-Hyd]</td>
<td>7.3-8.1</td>
</tr>
</tbody>
</table>

Mostly hydrogen evolved from the hydrogenated MgB$_2$ based materials.
• Modified MgB$_2$ that can be hydrogenated under milder conditions have been prepared.
• Demonstrated hydrogenation of bulk MgB$_2$ to Mg(BH$_4$)$_2$ at 300 °C and 700 bar.
• Hydrogenation of MgB$_2$ to Mg(BH$_4$)$_2$ at 300 °C and 700 bar has been proven in absents of tetrahydrofuran.
• MD simulations indicate orientation-dependent reactivity of MgB$_2$ with THF.
• Greater than 7 wt% H$_2$ released from MgB$_2$-X-THF material hydried at 300 °C and 700 bar.

<table>
<thead>
<tr>
<th>Bulk MgB$_2$ Hydrogenation Conditions</th>
<th>State of Art</th>
<th>Project Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure/ bar</td>
<td>≥900</td>
<td>≤ 700</td>
</tr>
<tr>
<td>Temperature/ °C</td>
<td>~400</td>
<td>≤ 300</td>
</tr>
</tbody>
</table>

Summary

Simultaneous lowering of bulk MgB$_2$ hydrogenation conditions from 900 bar and 400 °C to 700 bar and 300 °C has been demonstrated for first time.
Acknowledgements

<table>
<thead>
<tr>
<th>HYMARC Partners</th>
<th>Partner Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawrence Livermore National Laboratory</td>
<td>Dr. Wood, Dr. Kang and Dr. Wan:</td>
</tr>
<tr>
<td></td>
<td>➢ Molecular dynamic simulations of modified magnesium borides.</td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td>Dr. Stavila and Dr. White:</td>
</tr>
<tr>
<td></td>
<td>➢ High pressure hydrogenation experiments.</td>
</tr>
<tr>
<td>National Renewable Energy Laboratory</td>
<td>Dr. Gennett, Dr. Leick and Dr. Martinez:</td>
</tr>
<tr>
<td></td>
<td>➢ Temperature programmed desorption.</td>
</tr>
<tr>
<td></td>
<td>➢ Mass spec analyses of desorbed gas.</td>
</tr>
</tbody>
</table>

Project Funding: US. DOE-EERE’s Fuel Cell Technologies Office
THANK YOU