Advances in Gas Filtration Materials Research: Fuel Cell Air Purification Challenge?

AFS: FILTCON 2019 Conference

Dr. Godwin Severa, PhD. MBA.
Hawaii Natural Energy Institute
University of Hawaii
April 1-3, 2019

Ionic Liquid Based Sorbents for Acidic Gas Capture.
Outline

• Current state of Art: Acidic Gas Pollutant Mitigation Approaches
 ➢ Industrial Flue Gas
 ➢ Air Purification

• Advances in Acidic Gas Sorbent Materials Development.
 ❑ Improvements in state of art [composites, promoters, supports]
 ❑ MOFs
 ❑ Ionic Liquids
 ❑ Hybrid Materials
 ❑ Supported Sorbents

• HNEI-Severa Lab: Acidic gas sorbent materials research.
• Acknowledgements
Types of Air Pollutants

Particulate Pollutants: Ash, dust, metallic (Hg, etc) and nonmetallic (sulfates, nitrates, etc) compounds.

Gas Pollutants: Sulfur oxides (SO\(_x\)), Nitrogen oxides (NO\(_x\)), carbon oxides (CO\(_x\)), Volatile organic compounds (VOCs), ground-level ozone (O\(_3\)).

EPA: http://www3.epa.gov/airquality/urbanair/
Detrimental Effects of Air Pollutants

Gas Pollutants:
- Detrimental to human healthy
- Toxic to environmental - cause acid rain, endanger marine life
- Technology effects: hinder use of unfiltered air in fuel cells

Particulate Pollutants:
- Causes respiratory problems, premature deaths.
- Detrimental to ecosystem especially mercury.
- Reduce visibility
- Technological effects: reduce efficiency

Classic Flue Gas Pollutants Removal Approaches

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Pollutant Mitigation Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur dioxides, SO$_2$</td>
<td>Flue gas desulfurization, Dry sorbent injection with fabric filter.</td>
</tr>
<tr>
<td>Other acid gases (H$_2$S, HCl)</td>
<td>Flue gas desulfurization, Dry sorbent injection-fabric filter</td>
</tr>
<tr>
<td>Nitrogen oxides, NO$_x$</td>
<td>Selective catalytic reduction (SCR), Activated carbon injection with fabric filter</td>
</tr>
<tr>
<td>Carbon dioxide, (CO$_2$)</td>
<td>Solvents, membranes, solid sorbents</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>Selective catalytic reduction with FGD, Activated carbon injection (ACI), ACI with Fabric Filter</td>
</tr>
<tr>
<td>Non-mercury metals</td>
<td>Fabric Filter or electrostatic precipitators.</td>
</tr>
</tbody>
</table>

http://www3.epa.gov/mats/powerplants.html
Flue Gas Pollutants Mitigation Approaches

NO\textsubscript{x} Mitigation

Selective reduction of NO\textsubscript{x} using NH\textsubscript{3} at high temperatures (300-500 °C)

\[
\text{NO} + 2\text{NH}_3 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O} + 2\text{N}_2
\]

Advantages:
- Cheap
- Proven technology
- Some reversibility at high temperature (e.g. ethanol amines)

SO\textsubscript{2} mitigation (Desulfurization)

Sorbents: Metal Compounds (CaO/CaCO\textsubscript{3})

\[
\text{SO}_2 + \text{Ca(OH)}_2 \rightarrow \text{CaSO}_4 + \text{H}_2\text{O}
\]

Disadvantages:
- Issues of reversibility with sorbent cycling
- Bulky solid waste
- Waste water
- High energy usage
Acidic Gas Air Pollutant Removal Approaches

- Pure Activated carbons

- Impregnated activated carbons/silica:
 - Metal hydroxides (e.g. KOH, Mg(OH)₂)
 - Metal oxides (e.g. CaO, MgO, ZnO, KMnO₄)
 - Metals (e.g. Cu, Fe, K, V, Ca)

- Disadvantages of current approaches:
 - Non reversible at moderate conditions
 - Bulky waste
 - Pollutes environment
 - Low breakthrough capacity under harsh conditions

http://www.freudenbergfuelcellproducts.com/fuel-cell-filters
Future Approaches to Acid Gas Pollutants Mitigation

Regenerable Materials
- Mixed metal compounds
- Metal Organic frameworks
 - Zeolite imidazolium frameworks (ZIFs)
- Permanent porous liquids
 - Ionic Liquids
- Hybrid materials
- Supported materials

Potential for higher performance, cost savings and waste reduction

http://www.rsc.org/chemistryworld/2015/11/first-permanently-porous-liquids-created
Sun et al. AIChE Journal, Vol. 60, No. 6, 2314
Recent Advances in State-of-Art: Metal Oxides for H$_2$S and SO$_2$ Capture.

- Composites and supports for H$_2$S:
 - ZnO supported on SBA-15, higher capacity compared to commercial ZnO.
 - Mesoporous metal oxides (e.g. Cr$_2$O$_3$ and CuO) show better performance, up to 200 times, compared to corresponding none porous oxides.

- Incorporation of dopants: Effect on H$_2$S and SO$_2$ sorption.
 - Copper doping in ZnO supported on silica improves ZnO conversion to ZnS from 64% to 93%.
 - Doping of MgFeAl mixed metal oxide derived from hydrotalcites, with Cu results in 1600 mg SO$_2$/g sorbent compared to about 1110 mg/g.

Challenges

- Sorbent regeneration results in loss of capacity with cycling.
 - Agglomeration of oxides with cycling, loss in surface area and porosity
- High temperatures >400 ºC needed for regeneration.

Mansi S. Shah et al., Chem. Rev. 2017, 117, 9755–9803
Y. Mathieu et al. / Fuel Processing Technology 114 (2013) 81–100
Metal Organic frameworks (MOFs)

Characteristics of MOFs
- Tunable porosity
 - Size, shape
- Large surface area
- Tunable composition
 - Functionality, selectivity

Advantages of MOFs in gas sorption
- Room temp gas sorption
- Reversible gas sorption
- High gas pollutant sorption kinetics
- High gas selectivity

Sun et al. AIChE Journal, Vol. 60, No. 6, 2314
Li et al., Materials Today, Volume 21, Number 2, March 2018
Metal Organic frameworks (MOFs)

MOFs for SO₂ and H₂S capture

- Defected MOFs and amine functionalized/appended MOFs show high SO₂ sorption, 11 mmol SO₂/g at 293K.
- MOF MIL-101 absorbed 38 mmol H₂S/g sorbent.
- Selective functionalization of MOFs with basic groups

More studies needed for evaluation of MOFs for SOₓ H₂S and NOₓ capture

MOFs: Zeolite imidazolate frameworks

Characteristics of ZIF-MOFs

- High thermal stability
- High surface area
- Tunable porosity
- High chemical stability

Challenges of MOFs

- Adsorption performance may be affected by water, require activation for enhanced capacity
 - H_2S breakthrough capacity increased by 38% on activation at 180 °C.
- Partial reversibility, MIL 101
- Stability issues
 - Thermal stability concerns
 - Susceptible to Hydrolysis
 - Poor stability under acid environments
Ionic Liquids

Characteristics of ionic liquids
- Negligible volatility
- Large liquidus range: 25-400 °C
- High viscosity
- Non flammable
- Tunable chemical properties

Advantages of IL in gas absorption
- Potential for reversible gas absorption
- Non volatile
- High gas pollutant sorption kinetics

Challenges of Bulky IL in gas sorption
- Poor gas contaminant permeation into the bulky
- Poor gas pollutant selectivity

B. Kirchner, Topics in current chemistry, in: B. Kirchner (Ed.) Ionic liquids, Springer-Verlag new york, 2009, pp. 40.
http://www.chem.uniroma1.it,
• Reversible and selective removal of SO₂ from flue gas by ionic liquids.

High viscosity of IL and high flue gas temp limits practical applicability

Carmen Froschauer, EUCHEM 2012
Modification of Support for enhanced SO$_2$ or H$_2$S capture.

- Basic chemicals or functionalities (e.g., PEI, urea, amines, hydroxyl) incorporated
- Activated carbon and mesoporous silica popular supports.

Direct modification of support by grafting chemicals.
- Consistent capacity with sorbent cycling
- Low pore blockage
- Generally lower gas uptake, due to partial utilization of support surface for gas sorption.

Physical impregnation of sorbents on supports
- Generally higher gas uptake as whole surface of support is impregnated with sorbent.
- Sorbent leakage/stripping
- Pore blockage correlated with sorbent loading ratios

Hybrid Sorbents: Co-operative sorption (e.g., activated carbon-ionic liquid; MOF-Graphene, MOF-IL)
Fuel Cell Air Purification

Development of advanced air filtration materials for fuel cell operations in harsh environments.

Stringent fuel cell air requirements
- High air flow rates
- Low pressure drop
- Low acid gas pollutant tolerant levels

Sorbent Implications:
- Low back pressure
- Effective acidic gas capture.
- High breakthrough capacity

Hybrid sorbents and Supported sorbents have potential in fuel cell air purification

HNEI-Severa Lab Approach
Regenerable Materials for Acid Gas Capture

Hybrid materials and Supported sorbents.
Ionic Liquids, Mixed Metal Materials, Nano-Confinement Effects

Air Pollutant Mitigation for Acidic Gas Fuel Cell Applications
Process of Physical Support of Ionic Liquid onto Nano-Porous Materials

- SEM images of pure and ionic liquid impregnated activated carbon (AC)

Prepare ionic liquid solution

Incipiently impregnate solution into AC.

Perform vacuum drying of impregnated AC.

- Microporous and mesoporous activated carbon
 - Pore volume > 0.48 cm³/g
 - Surface area > 1000 cm²/g

Impregnated AC maintains porosity after ionic liquid impregnation process.

Best Performance: Nano-Confined [C$_2$mim][Ac] Sorbent (EMA)

- Highest sorption capacity and break through time from 1-ethyl-3-methylimidazolium acetate impregnated activated carbon (EMA).

- EMA chosen as model impregnated ionic liquid sorbent for detailed study.

Experimental conditions:
- 15 LPM purified air
- 15 ppm SO$_2$ contaminants
- 50 % RH @ 25 °C.
- 3 g samples.

- **Break through times:**
 - EMA>EML>HMN, EMS>AMC, HMS, BMHS >EMHS >BMF.
Mechanism of \(\text{SO}_2 \) Capture by EMA Elucidated by combination of NMR, FT-ATR and TGA-DSC.

Mechanism derived from FTIR, thermal analysis and NMR data. S-O vibrational frequencies indicate presence of chemically bound \(\text{SOx} \) species.

New peaks after \(\text{SO}_2 \) sorption
\(\text{S}=\text{O}: 1430 \text{ cm}^{-1} \text{ – 1470 cm}^{-1}. \)
\(\text{S-O}: 973, \text{ 1070, 1170, 1220 cm}^{-1} \)

\[\begin{align*}
\text{SO}_2 + \text{H}_2\text{O} + \text{O}_2 & \xrightarrow{\text{activated carbon}} \text{H}_2\text{SO}_4 \\
\text{H}_2\text{SO}_3 & \xrightarrow{[\text{C}_2\text{min}][\text{CH}_3\text{CO}_2]} [\text{C}_2\text{min}][\text{HSO}_3^-] + \text{CH}_3\text{CO}_2\text{H}
\end{align*} \]

I. Absorption/Adsorption of \(\text{SO}_2 \) into IL and onto AC surface of EMA.
II. Conversion of sorbed \(\text{SO}_2 \) to sulfate and sulfites (acids).
III. Protonation of acetate by the strong acids.
IV. Displacement of protonated acetate by the weak bases, \(\text{HSO}_3^- \text{ and HSO}_4^- \).

DFT Molecular Modelling of EMA Ionic Liquid

GAMESS
DFT: B3LYP
6-311G basis set

Determine ionic liquid, $[C_{2}\text{mim}][\text{Ac}]$, binding affinity for SO$_2$ and NO$_2$.
Simultaneous Interaction of the ionic liquid \([\text{C}_2\text{mim}][\text{Ac}]\) with \(\text{SO}_2\) and \(\text{NO}_2\)

Higher affinity for \(\text{SO}_2\) than \(\text{NO}_2\) for ionic liquid \([\text{C}_2\text{mim}][\text{Ac}]\)

\([\text{C}_2\text{mim}][\text{Ac}]\): Stronger \(\text{SO}_2\) binding compared to \(\text{NO}_2\)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Adsorbate (\text{YO}_2)</th>
<th>(\Delta H) (298 K)</th>
<th>(\Delta G) (298 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([\text{C}_2\text{mim}][\text{Ac}])</td>
<td>(1^\text{st} \text{NO}_2)</td>
<td>-30</td>
<td>5</td>
</tr>
<tr>
<td>([\text{C}_2\text{mim}][\text{Ac}]\cdot\text{NO}_2)</td>
<td>(2^\text{nd} \text{NO}_2)</td>
<td>-41</td>
<td>11</td>
</tr>
<tr>
<td>([\text{C}_2\text{mim}][\text{Ac}]\cdot\text{SO}_2)</td>
<td>(2^\text{nd} \text{NO}_2)</td>
<td>-31</td>
<td>12</td>
</tr>
<tr>
<td>([\text{C}_2\text{mim}][\text{Ac}])</td>
<td>(1^\text{st} \text{SO}_2)</td>
<td>-99</td>
<td>-48</td>
</tr>
<tr>
<td>([\text{C}_2\text{mim}][\text{Ac}]\cdot\text{NO}_2)</td>
<td>(2^\text{nd} \text{SO}_2)</td>
<td>-91</td>
<td>-34</td>
</tr>
<tr>
<td>([\text{C}_2\text{mim}][\text{Ac}]\cdot\text{SO}_2)</td>
<td>(2^\text{nd} \text{SO}_2)</td>
<td>-71</td>
<td>-25</td>
</tr>
</tbody>
</table>

Adsorption enthalpies and Gibbs energies (in kJ/mol) for \(\text{YO}_2\) binding with \([\text{C}_2\text{mim}][\text{Ac}]\) and \([\text{C}_2\text{mim}][\text{Ac}]\cdot\text{XO}_2\) where \(X\) and \(Y\) are \(\text{N}\) or \(\text{S}\) atoms.

Atom colors: black (\(\text{C}\)), blue (\(\text{N}\)), red (\(\text{O}\)), yellow (\(\text{S}\)) and white (\(\text{H}\)).
Design, Synthesis and Characterization of Metallo Ionic Liquids and Ionic Salts for Acid Gas Capture

- Targeting simpler scalable syntheses approaches.
 - Minimum use of solvent
 - Least number of syntheses steps
 - One pot approaches
 - Cost competitive materials
 - Relatively low reaction temperatures

- Synthesized acetate based metallo ionic liquids/ionic salts with Fe, Mn, Zn, Mg, Co or Sc ions.
 - Still trying to crystallize discernible grains of Co and Sc metallo ionic liquids.

Motivated by our previous work showing acetate anion of \([\text{C}_2\text{mim}][\text{Ac}]\) having large effect on \(\text{SO}_2\) capture and coordination potential of acid gas species on metal ions.

Samples for XRD
Acetate Based Metallo Ionic Liquid

- The metallo ionic liquid has potential for acidic gas capture

[C$_2$ mim][Fe]$_2$[Ac]$_5$H$_2$O Melting point: ~95 °C

Acidic gas (SO$_2$, H$_2$S and CO$_2$) sorption testing planned
Acetate Based Metallo Ionic Liquids/Salts

• The ionic salts have potential for acidic gas capture

[C$_2$ mim][Mn]$_2$[Ac]$_5$ Melting point: ~123 °C
Different Topology and Stereochemistry Depending on Water Content

Anhydrous monoclinic Mn(II) compound Vs. Hydrous triclinic Mn(II) compound

Is activation required for acidic gas capture?
Are Open metal sites formed on water removal?
• Composites, promoters and supports are effective for improving absorption capacity of metal oxide sorbents.

• Hybrid sorbents and supported sorbents have potential for fuel cell air filtration in future.

• More consistent studies of sorbents performance under simulated practical conditions are needed to understand their potential to meet fuel cell air filtration needs.

• The development of practical sorbents must take into account the effect of humidity and other gas components on sorbent performance.

• Metallo ionic liquid and ionic solids based on acetate anion with potential for acid gas capture have been developed.
Acknowledgement

- Edward Bruffey III
- Colleen Kelly
- Jordan Schmidt
- Mr. Keith Bethune
- Prof. John Head
- Greg Finkelstein
- Przemyslaw Dera
- Dr. Scott Higgins
- Dr. Richard Rocheleau

Funding: Office of Naval Research (APRISES 2014).
University of Hawaii MSCoRE funding (2019).
Thank You

Contact information:
Dr. Godwin Severa PhD. MBA.
severa@hawaii.edu