Equation-Based, Object-Oriented Fuel Cell Modeling

Kevin Davies
HiSERF
January 24, 2014
Introduction and motivation

- Many uses of models in FC research and development:
 - To evaluate hypotheses of physical behavior
 - To run tests quickly and cheaply
 - To take virtual measurements
 - To design hardware and controls
 - For model-based control and model-in-the-loop

- Unfortunately,
 - Specialized models are needed for these tasks
 - Model development is labor intensive
 - Source code is not widely shared
Research gap

- PEMFC models are limited by:
 - Range of operating conditions
 - Reusability under different:
 - Boundary conditions
 - Physical configurations
 - Fidelity:
 - Dynamics
 - Spatial resolution
 - Dimensionality
 - Phases
 - Physical domains
 - Second-order phenomena
 - Computational performance
Overview of research

Vision: An open-source PEMFC model library suitable for many applications

1. **Fidelity and flexibility:** How can we model all the relevant physical phenomena of FCs to support the analysis and design of PEMFC systems, inclusive of hardware and controls?

2. **Model architecture:** How can the equations be structured so that they can be symbolically manipulated to improve computational speed and to allow linearization for control design?

3. **Performance:** Which combinations of accuracy and speed can be achieved by adjusting fidelity?
Outline

- Introduction and overview
- Related work
- Description of the model
- Sample results
- Contributions
Physics-based vs. semi-empirical models

- **Physics-based**
 - Usually Navier-Stokes via PDEs
 - Bernardi and Verbrugge (1992) led to Kulikovsky (2003), Um and Wang (2004), and others
 - Common due to advancements in CFD
 - Still too slow for systems and controls
 - 30 min. simulation time for a quasi-3D cell model (Kim, 2010)

- **Semi-empirical**
 - Usually causal ODE or DAE
 - Beginning from Springer et al. (1991)
 - Fast simulation, suitable for dynamics
 - Limited insight into physical behavior
 - Not well-suited for design
Additional classification by causality

- **Physics-based**
- **Acausal** (declarative, physical-interaction, equation-based)
- **Semi-empirical**
- **Causal** (imperative signal-flow, sequential modular)
Causal vs. Acausal

Input/output

Assignments

Algorithms

Efforts/flows

Equations

Systems of equations

\[\begin{align*}
\text{Voltage} & = v \\
\text{Current} & = i \\
\text{Inductor} & = \frac{1}{L} \\
\text{Resistor} & = \frac{1}{R_1} \\
\text{Capacitor} & = \frac{1}{C} \\
\text{Resistor 2} & = R_2 \\
\end{align*} \]
Acausal PEMFC models

- Rubio et al. (2005 & 2010)
 - 1D
 - Isothermal
 - No external thermal or chemical connectors
 - No flow plates

- Davies and Moore (2007)
 - Quasi-2D
 - Lumped thermal

- Blunier and Miraoui (2008)
 - Quasi-2D
 - Isobaric along channels
 - Isothermal

- McCain et al. (2008)
 - 1D
 - Partitioned by species
Outline

- Introduction and research overview
- Related work
- **Description of the model**
 - Desired features
 - Fundamentals
 - Implementation
- Sample results
- Contributions
Ideally, what would a FC model cover?

Goal: To support FC research and development

- Dynamics
- Spatial distributions
- Multiple dimensions
- Multiple phases
- Heat generation
- Thermal conduction and convection
- Fluid dynamics
- Multi-component diffusion
- Electro-osmotic drag
- Ohmic losses
- Electrode kinetics
- Effects of material characteristics
Key architectural choices

- Physics-based
 - Detail about why certain behavior is observed
- Modular
 - Flexible cell architecture
 - Combinations of various species, phases, and regions
 - Object-oriented
- Reconfigurable
 - Flexible boundary conditions and assumptions (spatial resolution, dimensionality, included species, etc.)
 - Acausal or equation-based

Equation-based, object-oriented (EOO)
Outline

- Introduction and research overview
- Related work
- Description of the model
 - Desired features
 - Fundamentals
 - Implementation
- Sample results
- Contributions
Conservation at the species level

- **Problem**: How do we formulate exact conservation equations for each region, regardless of the size, when species are included in dynamically-varying amounts?

- **Approach**: Conservation equations for material, momentum, and energy of each species individually, with explicit contributions of advection and diffusion
 - Advection is direct rather than via PDE (material derivative)
 - Exact conservation guaranteed at every boundary
 - Zero torque imposed directly on the diffusive shear forces rather than via constraint on shear strain
 - No nonlinear systems of equations
Upstream discretization

\[T_n, \dot{Q}_n \quad \rightarrow \quad R = \frac{L}{kA} \quad \rightarrow \quad Pe = IR \quad \rightarrow \quad T_p, \dot{Q}_p \]

\[R\dot{Q}_i = (T_i - T) \left(1 + e^{\mp Pe/2} \right) \]

- No nonlinear systems of equations
- Also applied to material and transverse translational momentum
Profile along the transport axis

- When fluid is stagnant: central difference scheme
- As flow becomes infinite: upwind scheme

- Same as Patankar (1980) at midplane and at $Pe = 0$
- No singularity at $Pe = 0$
- Patankar solution was derived under assumption of zero net flow
Coupled advection and diffusion

- Advection and diffusion are additive.
- Rate of diffusion is independent of advection, but the property at the boundary depends on advection.
- Diffusion is important during flow reversal ($Pe \approx 0$).
Stefan-Maxwell diffusion

Background: Many FC models use Stefan-Maxwell equations for binary diffusion:

\[
\frac{\nabla \mu_i}{T} = \frac{n_{\text{spec}}}{\sum_{j=1}^{n_{\text{spec}}} n_i n_j} \left(\phi_j - \phi_i \right)
\]

- Nonlinear system of \(n_{\text{spec}} \) equations
- Singular as written
 - One equation (arbitrary choice!) is replaced with a bulk mass transport equation, or
 - A term is added to each equation to consider drag with the solid (singular as Knudsen diffusion becomes negligible!) (Weber & Newman, 2005)
Generalized Stefan-Maxwell diffusion framework

- **Problem**: How do we represent multi-component diffusion without nonlinear equations or singularities?
- **Approach**: Diffusive exchange of momentum rather than direct constraint on velocities
 - Every phase of every species \(i \) has a mobility with respect to each connected node \(j \)

 \[
 \mu_{ij} \dot{m} \Phi_i = \sum_{j=1}^{n_{\text{nodes}}} N_i (\phi_j - \phi_i)
 \]
 - This force is included in momentum balance
 - Describes electrical resistance and electro-osmotic drag
 - Also appropriate for thermal exchange (with change of variables)
Diffusive exchange

- Nodes are added among species as needed

<table>
<thead>
<tr>
<th>Number of species</th>
<th>Default connection</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>![Diagram for 2 species]</td>
<td>![Diagram for 2 species]</td>
</tr>
<tr>
<td>3</td>
<td>![Diagram for 3 species]</td>
<td>![Diagram for 3 species]</td>
</tr>
<tr>
<td>4</td>
<td>![Diagram for 4 species]</td>
<td>![Diagram for 4 species]</td>
</tr>
</tbody>
</table>

○ Node
● Species
Advective exchange

- In the case of reactions and phase change, translational momentum and energy are exchanged via advection.
- Intensive properties are those of the source.
Outline

- Introduction and research overview
- Related work
- Description of the model
 - Desired features
 - Fundamentals
 - Implementation
- Sample results
- Contributions
Overall goal

An open-source PEMFC model library suitable for many applications

1. Descriptive
2. Modular
3. Reconfigurable
4. Quick to simulate
Structure of the model library

- **Problem**: How can we organize the library?
 - 196 models, 428 functions, >26,000 lines of code
 - Many levels of physical and software detail
- **Approach**: Object-oriented package hierarchy

- FCSys
- 📜 User's Guide
- 🎨 Blocks
- ☑ Conditions
- ☑ Assemblies
- ☑ Regions
- ☑ Subregions
- ☑ Phases
- ☑ Species
- ☑ Chemistry
- ☑ Characteristics
- ☑ Connectors
- 🎨 Units
- 📜 Quantities
- ☑ Utilities
- 🎨 Icons
Physical interactions

- **Problem:** How can we best manage all the interactions among models?
 - Up to 50 variables involved in a single layer interface

- **Approach:** Hierarchy of acausal connectors
Novel application of efforts and flows

- Efforts and flows are usually power conjugates
- But also well-suited to:
 - Dalton’s law of additive pressures
 - Effort volume, flow pressure
 - Amagat’s law of additive volumes
 - Effort pressure, flow volume
- Another pair of opposites:
 - Chemical diffusion of a species
 - Effort potential, flow current
 - Reaction equilibrium
 - Effort reaction rate, flow stoichiometrically-weighted potentials
Problem:

- Faraday constant appears in model of electrical but not chemical species
 - Difficulty in coding a general species
- FC data is often not written in SI units
 - Entry is tedious and error-prone

Approach:

- Quantities written as the product of a number and a unit
- Units derived from universal physical constants
 - E.g.: \texttt{constant Q.Length m=10973731.568539*rad/R_{inf} "meter"};
 - Rydberg constant
- Those constants can be given any value
- Gas and Faraday constants normalized to 1 and eliminated from model
Adjustable fidelity

- **Problem**: How can we create detailed models and simple, fast-simulating models from the same library?

- **Approach**:
 1. **Index reduction**
 - States combined automatically when directly coupled, e.g.:
 - Zero thermal resistance among species \Rightarrow same temperature for all
 2. **Modularity**
 - Some layers can be combined
 3. **Options to**:
 - Vary spatial resolution and dimensionality
 - Apply assumptions—ideal gas, incompressible flow, etc.
Object-oriented features

- **Problem**: How can we implement all of the models systematically and without excessive redundancy?
 - 8 species, 2 fluid phases, 2 solid phases, 7 layers

- **Approach**: Inheritance and instantiation
 - 1 base model for all species
 - Species conditionally included
 - Material characteristics in a replaceable package
Phase model

- Contains interconnected species models

Graphite:
Subregion model

- Lowest level of spatial resolution
Region model

- Represents layers of cell
- 3D, rectilinear array of subregions
Cell model

- Single-cell PEMFC
- Up to 3 dimensions, but quasi-2D by default
Test stand model

- Applies boundary conditions to evaluate cell performance

 - BCs are replaceable:
 - Current or potential
 - Heat flow rate or temperature
 - Air or pure O$_2$

 - And adjustable:
 - Flow rates
 - Humidities
 - Outlet pressure
Outline

- Introduction and research overview
- Related work
- Description of the model
- Sample results
- Contributions
Test stand with a single cell (1 segment down the channel) has:

- 6887 variables (2749 time-varying)
- 55 states
- No nonlinear systems of equations

And takes:

- ~23 s to translate
- ~1.6 s to simulate a polarization curve (10 hrs of represented time)
Polarization curves under varying conditions

Temperature

Cell Polarization: Varying Inlet and Flow Plate Temperature
48.3 kPag; An|Ca: 1.5|2.0 stoich, H₂|Air, 80|50 % RH

- Model @ 40 °C
- Model @ 60 °C (baseline)
- Model @ 80 °C
- Experiment @ 40 °C
- Experiment @ 60 °C (baseline)
- Experiment @ 80 °C

Pressure

Cell Polarization: Varying Outlet Pressures
60 °C; An|Ca: 1.5|2.0 stoich, H₂|Air, 80|50 % RH

- Model @ 0 kPag
- Model @ 48.3 kPag (baseline)
- Model @ 202.7 kPag
- Experiment @ 0 kPag
- Experiment @ 48.3 kPag (baseline)
- Experiment @ 202.7 kPag

- Trends are qualitatively correct, but significant quantitative differences; may be due to
 - H₂ cross over
 - Transport behavior of the liquid
Energy balance

- ORR activation dominates the loss

Energy Balance
Baseline Conditions @ 1.5 A/cm²

Key:
- Thermal cond.
- Fluid
- Electrical

Anode
Cathode

PEMFC

- \(\text{H}_2 \text{O}_2 \) ca 28.8W
- \(\text{H}_2 \text{O}_1 \) ca 76.0W
- \(\text{O}_2 \) ca 0.2W
- \(\text{N}_2 \) ca 0.0W
- ca 54.3W

- \(\text{H}_2 \) an 0.4W
- \(\text{H}_2 \text{O}_1 \) an 11.2W
- \(\text{H}_2 \text{O}_2 \) an 9.5W
- an 14.3W

38.6W
Distributed temperature

- Temperatures up to ~5.5 K higher within cell due to heat generation (hottest in cathode CL)
Oxygen partial pressure

- Roll-off at concentration limit

O$_2$ Pressure from the Inlet to the ORR

Baseline Conditions

- Inlet
- caFP
- caFP-caGDL interface
- caGDL
- caGDL-caCL interface
- caCL/ORR

Pressure / kPa

Current density / A cm$^{-2}$
Segmented cell

- Liquid not included
- 31,990 variables (12,711 time-varying)
- Simulates in ~11 s
Sinusoidal electrical load

- 0.3 Hz
- Amplitude of 140 mA/cm²
- Offset of 80 mA/cm²
Outline

- Introduction and research overview
- Related work
- Description of the model
- Sample results
- Contributions
Contributions

- First acausal, physics-based FC model
- Highly modular, reconfigurable, and descriptive
- Possible extensions to other fluidic or electrochemical devices
- Novel equations which are consistent with fundamental transport theory

Available online
- Google “FCSys”
Funding

- Robert G. Shackelford Fellowship from the Georgia Tech Research Institute
- Presidential Fellowship from the George W. Woodruff School of Mechanical Engineering
- Grant #N00014-04-0682 from the Office of Naval Research
References

