USMC Okinawa Energy Demonstration Scoping Project

Out Brief
March 3, 2017
Scope Development Process

• Task 1 – Identify and prioritize 4 - 5 candidate project locations and associated demonstration concepts and objectives.

• Task 2 – Survey 4 - 5 candidate project locations/concepts and obtain initial site/facility data to assess needs/opportunities and revise prioritization and select top 2 – 3 candidate demonstration projects for next phase scoping and assessment.

• Task 3 – Develop conceptual level demonstration project scope and refined objectives for the top 2 - 3 most promising candidate locations.

• Task 4 – Assess the benefits and costs and feasibility of the selected candidate locations and select the top 1 – 2 demonstration projects for detailed planning

• Task 5 – Develop implementation plan(s) and recommendation for final demonstration scope, budget and schedule.
Selected Demonstration Scopes

Jungle Warfare Training Area (JWTC) – Main Compound
 – Renewable energy / microgrid demonstration

Foster Plaza Housing
 – Conservation voltage reduction demonstration
How does CVR Work?

• The amp draw of certain electric devices is proportional to the voltage used to energize the device.
 – These devices are called constant impedance or partial constant impedance loads.

• When the overall voltage on a distribution system is reduced, the current (and associated demand) of all constant impedance and partial constant impedance loads will decrease.

• Loads can be broadly characterized in three categories
 – Constant Impedance (Z) [Best]
 – Constant Current (I) [Moderate]
 – Constant Power (P) [No impact]

• With each load type demand varies differently as a function of voltage

 The amount of demand decrease per voltage reduced is called the CVR ratio. (%D/%V)
CVR Demonstration
CVR Demo Schematic
JWTC – Scope Concepts

Normal Operation (Grid Connected)
- Renewable PV energy reduces commercial power purchases

Emergency Microgrid Operation (Islanded mode)
- Networked and optimized PV/diesel hybrid generation microgrid to support energy sustainability, security and extended contingency operations.
- Generator paralleling and load sharing and added efficiency opportunities (e.g. DC power system) to maximize fuel efficiency extending islanded operation
- Redundant generation resources via the networking of multiple generation resources
Detailed design questions to be answered
- What loads should be included?
- What is the load profile for the critical loads?
- Can generator controls be upgraded or are new generators needed?
- If new generators are needed is it better to use just one larger new one?
- DC microgrid opportunities?
Mahalo!
(Thank you)

For more information, contact:

Leon R. Roose, Esq.
Principal & Chief Technologist
GridSTART

Hawaii Natural Energy Institute
School of Ocean & Earth Science & Technology
University of Hawaii at Manoa
1680 East-West Road, POST 109
Honolulu, Hawaii 96822

Office: (808) 956-2331
Mobile: (808) 554-9891
E-mail: lroose@hawaii.edu
Website: www.hnei.hawaii.edu