

# Direct Conversion of CO<sub>2</sub> into Biopolyester with Solar Energy and Water

### Jian Yu Hawaii Natural Energy Institute University of Hawaii at Manoa Hawaii, USA

Presented to ACS national meeting 2013, Indianapolis



www.hnei.hawaii.edu



### Indirect Biopolyester Production From CO<sub>2</sub>



- $\Box$  Vegetable oil or starch from photosynthesis of CO<sub>2</sub>, H<sub>2</sub>O and sunlight
- Biopolyester formed from the fermentable feedstocks
- □ Theoretical photosynthesis efficiency of high plants 4-5%,
- □ Real efficiency of fast growing crops (e.g. switchgrass) <1%
- Competition of food, feed, and bio-based products for arable land



### **Artificial Photosynthetic System**



 $CO_2 + H_2O + hv \longrightarrow CH_2O$  (biomass)

#### http://www.hnei.hawaii.edu



### CO<sub>2</sub> Fixation by a Lithoautotrophic Bacterium



Granules of polyhydroxybutyrate (40-60 wt%) accumulated in bacterial cells as carbon and energy storage material



Hydrogen used by cells for two purposes:

 $\Box$  H<sub>2</sub> used to produce NADH for reduction of CO<sub>2</sub>

 $\mathrm{CO}_2 + 2\mathrm{H}_2 \rightarrow \mathrm{CH}_2\mathrm{O} + \mathrm{H}_2\mathrm{O} \ (\mathrm{H}_2/\mathrm{CO}_2 = 2)$ 

 $\Box$  H<sub>2</sub> reaction with O<sub>2</sub> to release energy for ATP generation

| H <sub>2</sub> /CO <sub>2</sub> (mole/mole) | 16.3              | 5.9  | 3.3  | 2.5                 |
|---------------------------------------------|-------------------|------|------|---------------------|
| O <sub>2</sub> (mole %)                     | 31.4              | 23.3 | 10.7 | 6.3                 |
| Hydrogen energy used (kJ)                   | 4658              | 1686 | 943  | 715                 |
| Energy efficiency (%)                       | 10 <sup>(a)</sup> | 27.7 | 49.5 | 65.3 <sup>(b)</sup> |

 $\mathrm{H_2} + \frac{1}{2} \mathrm{O_2} \rightarrow \mathrm{H_2O}$ 

(a) No biomass synthesis

(b) Very slow CO<sub>2</sub> assimilation and biosynthesis

Ref. Yu, J. et al. Internal Journal of Hydrogen Energy, 38 (2013) 8683-90,



### System Energy Efficiency







### Solar Electricity & H<sub>2</sub> Generation (5/24/2012)



## Fast CO<sub>2</sub> Conversion into Biomass



□ Cell mass doubled in 8 hours

- □ High cell density of 23 g/L
- □ 45-50% of PHB, a biopolyester material



### **Biopolymer Recovered from Living Cells**





### Bioplastic of 100% CO<sub>2</sub> Carbon





### Artificial Photosynthesis vs Cyanobacterium





| Photosynthesis              | Artificial         | Natural <sup>(a)</sup> |  |
|-----------------------------|--------------------|------------------------|--|
| Species                     | Ralstonia eutropha | Arthrospira platensis  |  |
| Solar energy efficiency (%) | 3.4-6              | 2.5                    |  |
| Cell density (g/L)          | 23                 | 3.6                    |  |
| Cell double time (hrs)      | 8                  | 48                     |  |
| PHB or carbohydrate (wt%)   | 45                 | 19.2                   |  |
| Productivity (g/L.hr)       | 0.25               | 0.01                   |  |
| Scale up cost               | Low                | High                   |  |

(a). Tredici, M.R. & Zittelli, G.C. Biotech. Bioeng. 57(1998) 187-197

http://www.hnei.hawaii.edu

### Why is the Artificial System More Efficient?



Solar energy capture decoupled from CO<sub>2</sub> fixation:

- 1. Solar energy  $\rightarrow$  electricity + H<sub>2</sub>O  $\rightarrow$  H<sub>2</sub> +  $\frac{1}{2}$  O<sub>2</sub> (energy storage)
- 2.  $2H_2 + CO_2 \rightarrow CH_2O + H_2O$  (autotrophic  $CO_2$  fixation)



- Biopolyester can be directly produced from CO<sub>2</sub>, solar energy and water via an artificial photosynthetic system
- > The overall solar energy efficiency is 3-6%
- The purified biopolyester can be processed like petrochemical plastic.
- The artificial photosynthesis has much higher energy efficiency and productivity than natural photosynthesis



 Students and post-doctors for laboratory work
Office of Naval Research for financial support (HEET08, HEET09)
Thank You !!!