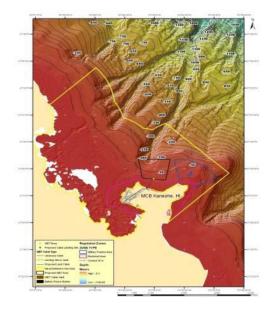
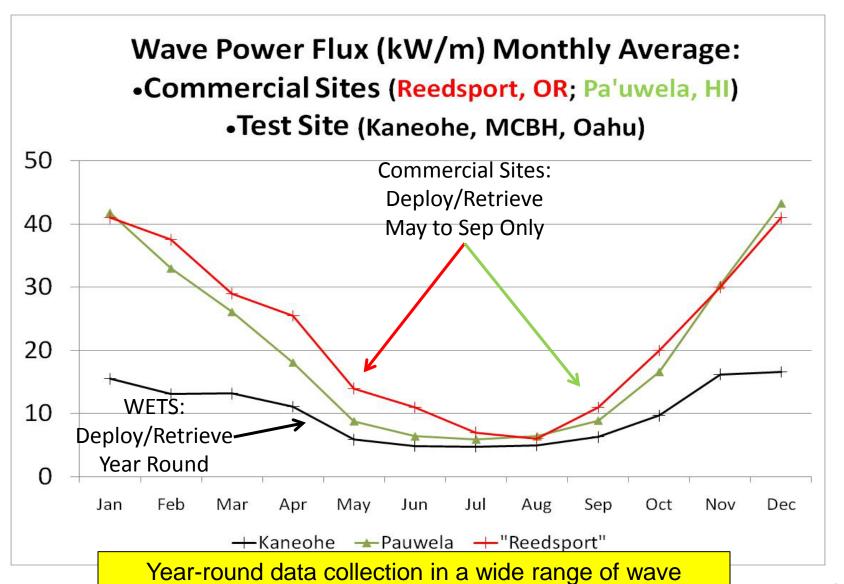

Wave Energy Test Site (WETS)

Marine Corps Base Hawaii (MCBH)

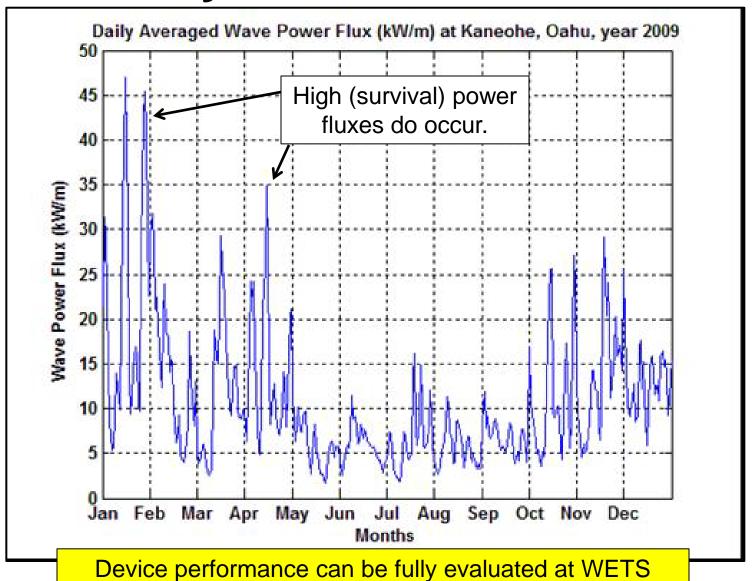

Alexandra DeVisser, NAVFAC-EXWC
Brian Cable, Sound & Sea Technology (SST)
Luis A. Vega, HNEI-University of Hawaii
Energy Ocean International
June 10, 2013

Wave Energy Test Site (WETS)

Objective: Provide location for year-long in-water technical and environmental-impact evaluation of WEC devices in the USA

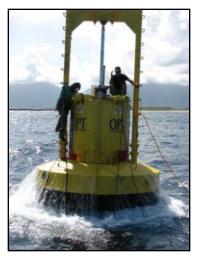


Approach:

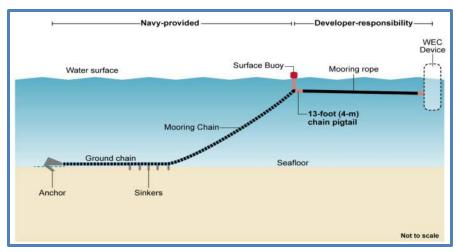

- Expand facility from one to three permitted berths (30, 60 & 80 m depths) leveraging:
 - DON/DOE funding;
 - ➤ NAVFAC: 10-year experience with previous tenant & ecological surveys;
 - Sound & Sea: Mooring/Berths Design; HINMREC/UH oceanography/ocean engineering.

Why WETS?

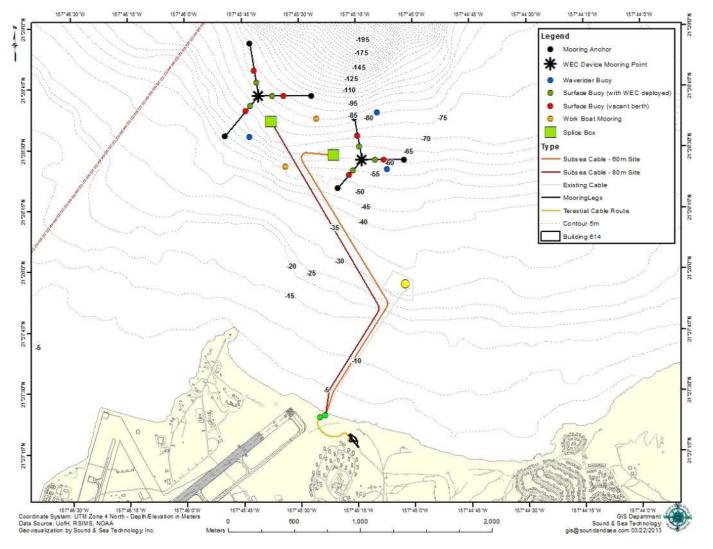
conditions is possible.


Daily Wave Power Flux

under all operational conditions


WETS End-Users Survey

- > Industry surveys revealed that potential users are:
 - Point Absorbers (e.g., NWEI, Carnegie, Columbia Power, OPT)



➤ Therefore, EA & berth design → (one leg of 3-point mooring design by SST shown) - Oscillating Water Column (e.g., Ocean Energy, Oceanlinx)

WETS Notional Layout

- Shore station facility
- Moorings

New 3-point moorings (60m & 80m depths)

Existing 3-point mooring (30m depth)

- Power cables

Existing subsea cable at 30m site

Two new trunk
cables to J-box
and pigtail cables
for deep sites

Designed by Sound & Sea Technology for NAVFAC

WETS: Site-Specific Parameters

Power	30m site	Deep sites
Water depth	One @ 30m	Two sites @ <100m
Maximum transmitted power	250kW @ 4160V	1 MW @11,500V

Moorings		
Water depth	One @ 30m	Two sites: 60m and 80m
Configuration	Tri-moor	Drag embedment anchor + concrete sinkers

WETS Modus Operandi

NAVFAC/MCBH

- Permitted berths with primary mooring, submarine power and data cable;
- office space; and,
- grid connection.

HINMREC/UH

- Evaluation of WEC <u>system</u> performance (power output as function of waves);
- Mooring system & power cable life expectancy evaluation;
- Environmental impact (acoustics, EMF, ecological surveys);
- Calibrated 7.5 days wave forecasting for operations planning.

TENANTS

- Connection to primary mooring and submarine cable socket;
- Additional proprietary data acquisition of <u>subsystem</u> parameters.

AII

Cooperative Research and Development Agreements (CRADAs).

WETS Schedule

- Existing 30 m/1.2 km offshore berth to be occupied by NWEI 03/14
- ➤ HINMREC Waverider buoy operational (providing real time wave data for eventual evaluation of WEC device performance and to calibrate models to provide 7.5 days wave forecasts at the test berths)
- WETS expansion design by Sound & Sea Tech. completed (two additional berths at 60 and 80 m depth)
- > EA/FONSI process expected to be completed by 09/13
- WETS Acquisition and Construction Phase after FONSI
- ➤ Additional berths operational by 09/14

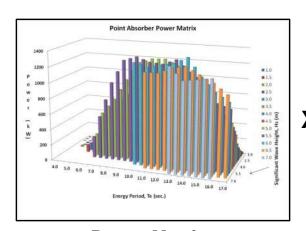
The HINMREC/UH Team: Supporting NAVFAC in WETS Environmental Assessment and Design


Daily Wave Power Flux (kW/m) Kilauea, Kauai (53 m depth) & Kaneohe, Oahu (58 m depth) Year: 2009 **Wave & Current Climate** 200 Glanea Mac: 207,4 kW/ 150 Kilauea/Annual Avrg kW/m 21.6 kW/m ohe/Annual Avrg Waverider In-situ Measurements **Bathymetry & Sediment Profile** Surface Buoy Water surface Mooring rope 13-foot (4-m) Ground chain Seafloor Not to scale **Output** - Mooring Design by SST - Power cable routing

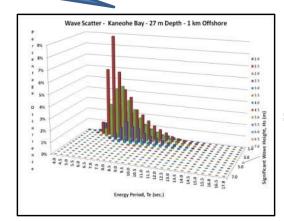
10

The HINMREC/UH Team: Will Support Testing Operations & Provide Independent Assessment of Performance

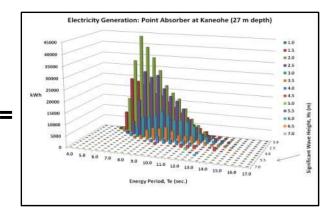
Provide Calibrated Wave Forecasting


WEC Device Environmental Impact:

- Chemical & Ecological site surveys
- Acoustic & EMF signatures →


Database to address regulatory and stakeholder issues

Device Power Performance:


- Electrical output vs. wave parameters

Power Matrix: kW vs. Hs/Te

Wave Scatter:
Occurrence vs. Hs/Te

kWh vs. Hs/Te