

Introduction: A novel technology is being developed to produce hydrocarbon oil and chemicals (C7-C16) from CO_2 and solar energy. The process consists of water hydrolysis with solar electricity, hydrogen-based CO₂ fixation by an autolithotrophic bacterium under dark conditions, and thermal catalytic conversion of the cell mass into hydrocarbon oil. Aromatics are the major compounds in the oil. High performance transportation fuels can therefore be produced, by refining the renewable oil.

Method: The process consists photovoltaic assembly, a water electrolyzer, a dark fermenter in which autotrophic hydrogen-oxidizing bacterium assimilates CO₂ with H_2 and O_2 . The biomass is converted into renewable oil and chemicals in a thermal reactor.

Renewable Hydrocarbon Oils and Chemicals from Solar Energy and Carbon Dioxide

Pradeep Munasinghe*, Shimin Kang and Jian Yu (jianyu@hawaii.edu), Hawaii Natural Energy Institute University of Hawaii at Manoa, 1680 East-West Rd. Honolulu, HI 96822, USA

Bacterial cell mass (about 52% of PHB) One-pot in H₃PO₄

Result 4: Composition of PHB oil with GC-MS

Chemicals	Oxygenate	Acyclic alkane	Cyclo- alkane	Acyclic alkene	Cyclo- alkene	Benzene	Naphthalene
Area (%)	7.9	0.6	0.1	0.1	2.0	79.0	10.4
Carbon distribution	<c7< td=""><td>C7-C8</td><td>C9-C10</td><td>C11-C12</td><td>C13-C14</td><td>C15-C16</td><td>>C16</td></c7<>	C7-C8	C9-C10	C11-C12	C13-C14	C15-C16	>C16
Area (%)	ND	0.1	8.2	18.8	52.7	19.2	ND

Ref. Kang S. & Yu J. (2014) RSC Adv. 4(28): 14320-14327.

Result 5 : High performance transportation fuels from PHB oil (light & heavy fractions)								
Fuels	Gasoline	PHB oil- Light	PHB oil- heavy	Ethanol				
BP (°C)	40-200	40-250	>250	78				
C (wt%)	80.4	83.2	65.5	52.2				
H (wt%)	12.3	10.3	8.6	13.0				
O (wt%)	6.4	6.3	25.6	34.8				
HHV (MJ/kg)	41.8	42.1	34.4	29.7				

Research (HEET10, APRISES'11)

Acknowledgement: Funds from Office of Naval