NUMERICAL MODELING TOOLS IN SUPPORT OF WEC DEVICE **PERFORMANCE EVALUATION** AT THE **US NAVY WAVE ENERGY TEST SITE** (WETS) **Gérard Nihous** Krishnakumar Rajagopalan Luis A. Vega **University of Hawai'i**

Numerical Modeling: How & Why

Will summarize <u>How</u> and concentrate in <u>Why</u> \rightarrow

- Site specific vs. generalized WEC design
- Operational environment vs. Survival environment
- Electricity production estimates
- Premature (*unfair?*) LCOE (\$/kWh)
- Considering lower Power Flux (kW/m) sites to expand market (e.g., Asia Pacific Region)

HIERARCHY OF MODELS

Theoretical

- Linear wave theory pioneering work (Evans, Newman, etc.): Max. Capture Width (m) = Power Absorbed (kW)/Power Flux (kW/m);

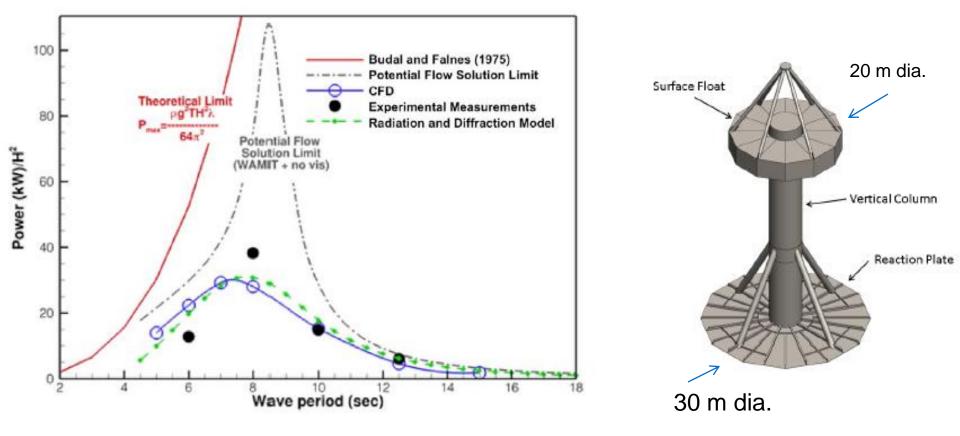
- Estimated optimal separation and ocean area requirements for OWC array

<u>Linear potential solvers</u> (e.g. WAMIT)

- Assessed published PELAMIS Power Matrix and modeled arrays to estimate ocean area requirements
- Small amplitude wave and body motions
- No viscous effects
- Fast solvers
- Single transfer function applicable to any sea state

<u>CFD</u>

- Fully nonlinear Navier-Stokes equations
- Steep waves, Flow separation
- Entire fluid domain discretized
- > Slow solvers
- Each sea state (e.g., H_s , T_p) needs to be modeled


Hybrid method

- Hydrodynamic coefficients from *Potential theory and CFD*
- Much faster than CFD
- Each sea state also needs to be modeled
- > To be used at WETS with the AZURA and LIFESAVER

EXECUTIVE SUMMARY

- Numerical wave tank studies in agreement with experimental studies.
- Modeling WECs with FLOW-3D Solver or OpenFOAM.
- Hybrid method for operational seas.
- CFD for extreme wave conditions.
- Numerical models will be used to assess performance of WEC devices to be tested at WETS (*MOA required*)

Mirko's Illustration of Models Available

(2.5 m regular wave from Mirko Previsic et al)

- Hybrid method compares well with CFD, Experiments
- Extreme wave scenarios *only with* CFD, Experiments

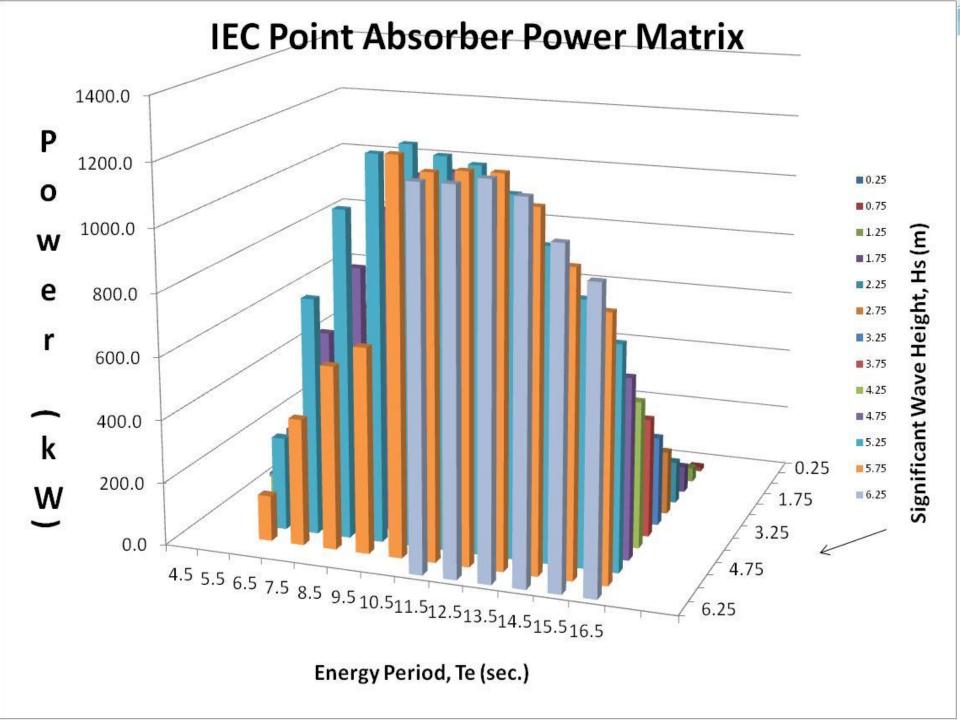
Wave Resource

<u>Challenge</u>: Site specific wave power flux Po (kW/m) vary significantly over the year with summer months at ~ 10% of the winter values

WETS: Annual Average:12 kW/m; Peak Hourly:170 kW/m

Te, Energy Period

	4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
0.75 m											
1.25 m											
1.75 m											
2.25 m											
2.75 m											
3.25 m											
3.75 m											
4.25 m											
4.75 m											
5.25 m											
5.75 m											
6.25 m											
6.75 m											
7.25 m											
7.75 m											


Power Flux Distribution Po (kW/m) 90% Cumulative

Hs

	4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
0.75 m											
1.25 m											
1.75 m											
2.25 m											
2.75 m											
3.25 m											
3.75 m											
4.25 m											
4.75 m											
5.25 m											
5.75 m											
6.25 m											
6.75 m		Pauwela (Annual Av	erage: 23 k	W/m; Peal	50 kW/h)					
7.25 m		Dist	ribution Po	o (kW/m) 9	0% Cumula						
7.75 m											

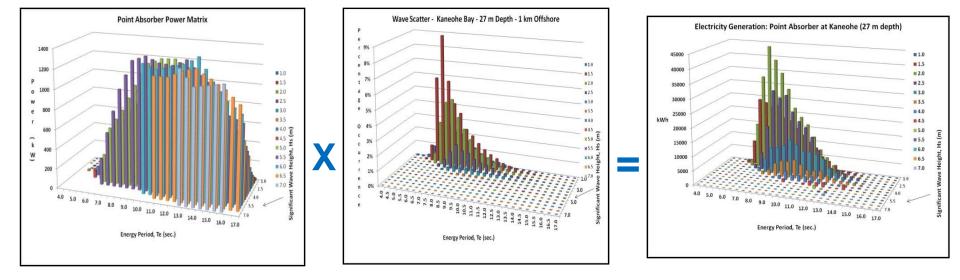
	4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
0.75 m											
1.25 m											
1.75 m											
2.25 m											
2.75 m											
3.25 m											
3.75 m											
4.25 m											
4.75 m											
5.25 m											
5.75 m											
6.25 m	Grays Har	bor (Annua	Average:	31 kW/m;	Peak Hour	ly: 1160 kV	V/m)				
6.75 m											
7.25 m											
7.75 m											

WEC Device Power Matrix

		4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
	0.75 m											
	1.25 m			IEC Sampl	e Power N	latrix (shov	ving bins >	20% name	plate)			
	1.75 m											
-	2.25 m						0.23	0.27	0.28	0.26	0.22	
	2.75 m				0.20	0.28	0.34	0.39	0.42	0.39	0.32	0.27
	3.25 m				0.29	0.40	0.48	0.55	0.58	0.54	0.45	0.38
IEC	3.75 m			0.22	0.38	0.54	0.64	0.73	0.77	0.72	0.59	0.49
Name Plate:	4.25 m			0.27	0.48	0.68	0.82	0.93	0.97	0.91	0.75	0.63
	4.75 m			0.29	0.62	0.84	1.03	1.14	1.16	1.10	0.97	0.82
"1 MW"	5.25 m			0.30	0.76	1.04	1.22	1.26	1.23	1.21	1.13	0.98
	5.75 m				0.40	0.58	0.65	1.25	1.20	1.21	1.21	1.12
	6.25 m								1.19	1.20	1.22	1.18
	6.75 m										1.16	1.12
	7.25 m											
	7.75 m											

	4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
0.75 m											
1.25 m											
1.75 m											
2.25 m			0.23	0.26	0.25	0.22					
2.75 m		0.22	0.34	0.39	0.36	0.31	0.25	0.21			
3.25 m		0.31	0.48	0.52	0.48	0.42	0.34	0.28	0.23	0.21	
3.75 m		0.36	0.61	0.66	0.60	0.53	0.44	0.35	0.29	0.26	
4.25 m			0.76	0.80	0.73	0.64	0.53	0.44	0.36	0.32	
4.75 m			0.92	0.92	0.85	0.76	0.64	0.52	0.43	0.40	
5.25 m			0.99	0.99	0.96	0.85	0.74	0.61	0.50	0.46	
5.75 m			1.00	1.00	1.00	0.94	0.81	0.70	0.58	0.51	
6.25 m				1.00	1.00	1.00	0.92	0.79	0.65	0.60	
6.75 m				1.00	1.00	1.00	1.00	0.86	0.73	0.67	
7.25 m				1.00	1.00	1.00	1.00	0.95	0.80	0.75	
7.75 m					1.00	1.00	1.00	1.00	0.87	0.81	

Pelamis: 750 kW 150 m/ 3.5 m dia/ 3 hinges 100 MW Farm: 4 km²


		4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
	0.75 m											
	1.25 m			IEC Sampl	e Power N	latrix (shov	ving bins >	20% name	plate)			
	1.75 m											
7	2.25 m						0.23	0.27	0.28	0.26	0.22	
	2.75 m				0.20	0.28	0.34	0.39	0.42	0.39	0.32	0.27
	3.25 m				0.29	0.40	0.48	0.55	0.58	0.54	0.45	0.38
IEC	3.75 m			0.22	0.38	0.54	0.64	0.73	0.77	0.72	0.59	0.49
Name Plate:	4.25 m			0.27	0.48	0.68	0.82	0.93	0.97	0.91	0.75	0.63
Name Flate.	4.75 m			0.29	0.62	0.84	1.03	1.14	1.16	1.10	0.97	0.82
"1 MW"	5.25 m			0.30	0.76	1.04	1.22	1.26	1.23	1.21	1.13	0.98
1 101 0 0	5.75 m				0.40	0.58	0.65	1.25	1.20	1.21	1.21	1.12
	6.25 m								1.19	1.20	1.22	1.18
	6.75 m										1.16	1.12
	7.25 m											
	7.75 m											

	4.5 s	5.5 s	6.5 s	7.5 s	8.5 s	9.5 s	10.5 s	11.5 s	12.5 s	13.5 s	14.5 s
0.75 m											
1.25 m	0.23	0.32	0.34	0.33	0.32	0.30	0.28	0.26	0.24	0.22	
1.75 m	0.44	0.58	0.58	0.56	0.51	0.49	0.44	0.41	0.37	0.35	
2.25 m	0.72	0.87	0.83	0.80	0.72	0.69	0.62	0.56	0.52	0.48	
2.75 m	1.00	1.00	1.00	1.00	0.95	0.90	0.81	0.74	0.67	0.61	
3.25 m	Storm	Protection								\rightarrow	
3.75 m											
4.25 m											
4.75 m				Wave Star	C5 (20 flo	ats) Power	Matrix: Bir	ns > 20% Na	ame Plate		
5.25 m											
5.75 m											
6.25 m											
6.75 m											
7.25 m											
7.75 m											

Non-Resonant Point Absorber (Tn: 4.5 s) Wave Star C5: 600 kW 20 x 5 m dia. floats

WEC Device Performance:

Electrical output vs. wave parameters

Power Matrix: kW vs. Hs/Te

Wave Scatter: Occurrence vs. Hs/Te kWh vs. Hs/Te

Electrical Generation with Hypothetical (IEC) "1 MW" Point Absorber

C *4	TAZ	A 1.D					
Site	Wave Scatter	Annual Po (kW/m)	Annual MWh	Max hour Po (kW/m)			
Pauwela (Maui) 73 m Depth	Hindcast (1990-2009) 3 km offshore	23	1,540 CF: 0.18	350			
Grays Harbor (WN) 40 m Depth	NDBC (1987-2008) 9 km offshore	31	1,968 CF: 0.23	1160			
Col. Rvr Bar (WN/OR) 135 m Depth	NDBC (1999-2008) 40 km offshore	40	2,546 CF: 0.29	1420			
		Theoretical Resource	Technical Resource	Survival			

Can your WEC device survive 1300 kW/m?

260 m long FPSO

Premature/Simplistic WEC Economics

- $CF \equiv production (kWh) / [8760 hrs x name plate (kW)]$
- WEC CFs similar to

PV Arrays (~ 0.16 - 0.2); Wind Farms (~ 0.2 - 0.5)

- 100 MW Array requires:
 ~ 2 km² (PV); < 7 km² (WEC); < 12 km² (Offshore Wind)
- <u>CC target</u> for WECs vs. Wind Farms (~ 2,000 \$/kW); and PV Arrays (~ 6,000 \$/kW)
- WEC CC estimates: range from 30,000 \$/kW (prototypes) to target of 3,000 \$/kW (commercialization in ~ 10 years?)

Case	Size	Cap. Fac.	CC	Loan (I/N)	COE cc	COE omrr	COE
			(\$/kW)	%/years	\$/kWh	\$/kWh	\$/kWh
Future	90 MW	0.40	3,000	8/15	0.1	0.070	0.17
"		11	11	2.5/20	0.055	0.077	0.13
Future	90 MW	0.25	3,000	8/15	0.16	0.112	0.27
"			11	2.5/20	0.088	0.123	0.21
Future	90 MW	0.15	3,000	8/15	0.267	0.187	0.45
"		11	н	2.5/20	0.147	0.206	0.35
1st Gen.	750 kW	0.40	10,000	8/15	0.333	0.233	0.57
		11	11	2.5/20	0.183	0.257	0.44
1st Gen.	750 kW	0.25	10,000	8/15	0.534	0.372	0.91
		11	н	2.5/20	0.293	0.411	0.70
1st Gen.	750 kW	0.15	10,000	8/15	0.891	0.623	1.51
		11	П	2.5/20	0.489	0.687	1.18

Premature/Unfair LCOE (\$/kWh) estimates

Asia Pacific Region: Offshore **Wave Power** Flux (kW/m)

Nation	Ref. 2 (Cornett)	Ref. 3 (Fugro OCEANOR)	Wave Resource > 10kW/m
CENTRAL and WEST ASIA			
Pakistan	< 10 kW/m	5 to 10 kW/m	No
EAST ASIA			
People's Republic of China	< 10 kW/m	5 to 10 kW/m	No
PACIFIC			
Reference Site (Hawaii Global)	North: 30 to 40 kW/m South: 20 to 30 kW/m	North: 30 to 40 kW/m South: 20 to 30 kW/m	Yes
Cook Is./Rarotonga (~ 160 °W/22 °S)	30 to 40 kW/m	<mark>~ 20 to 30 kW/m</mark>	Yes
<mark>Fiji Islands (~ 178 °E/17 °S)</mark>	10 to 20 kW/m	< 20 kW/m	Yes
Kiribati/Tarawa (~ 175 °E/2 °N)	< 10 kW/m	5 to 10 kW/m	No
Marshall Islands/Majuro (~ 170 °E/5 °N)	10 to 20 kW/m	10 to 15 kW/m	Yes
Federated States of Micronesia (Global)	10 to 20 kW/m	10 to 15 kW/m	Yes
Nauru (~ 165 °E/0 °)	10 to 20 kW/m	10 to 15 kW/m	Yes
Palau (~ 135 °E/5 °N)	< 10 kW/m	10 to 15 kW/m	No
Papua New Guinea (Global)	< 10 kW/m	5 to 10 kW/m	No
Samoa (~ 172 °W/12 °S)	10 to 20 kW/m	10 to 15 kW/m	Yes
Solomon Islands (~ 160 °E/10 °S)	< 10 kW/m	10 to 15 kW/m	No
Timor-Leste (Global)	< 10 kW/m	5 to 10 kW/m	No
Tonga (~ 175 °W/22 °S)	10 to 20 kW/m	15 to 20 kW/m	Yes
Tuvalu (~ 180 ° /5 to 10 °S)	10 to 20 kW/m	15 to 20 kW/m	Yes
<mark>Vanuatu (~ 165 °E/15 °S)</mark>	10 to 20 kW/m	10 to 15 kW/m	Yes
SOUTH ASIA			
Bangladesh	< 10 kW/m	10 to 15 kW/m	No
India	- South Coast off <u>Nadu:</u> 10 to 20 kW/m - Elsewhere < 10 kW/m	Arabian Sea: 15 to 20 kW/m West & South Coasts: 10 to 15 kW/m	Yes
Maldives	10 to 20 kW/m	10 to 15 kW/m	Yes
Sri Lanka	<mark>- South Coast off Matara:</mark> 10 to 20 kW/m <mark>- Elsewhere < 10 kW/m</mark>	15 to 20 kW/m	Yes
SOUTHEAST ASIA			
Brunei Darussalam	< 10 kW/m	< 5 kW/m	No
Cambodia	< 10 kW/m	5 to 10 kW/m	No
Indonesia	- South Java: 20 to 30 kW/m - Elsewhere < 10 kW/m	South Java: 20 to 30 kW/m	Yes
Malaysia	< 10 kW/m	< 5 kW/m	No
Myanmar	< 10 kW/m	5 to 10 kW/m	No
Philippines	- North (Luzon & Babyan Is.): 10 to 20 kW/m - Elsewhere < 10 kW/m	- North: 15 to 20 kW/m - Elsewhere < 5 kW/m	Yes
Thailand	< 10 kW/m	< 5 kW/m	No
Viet Nam	< 10 kW/m	< 5 kW/m	No

To be Continued....

Hybrid approach for generating power matrix

Differential equation of heave motion

Mass $(M + \mu_{\infty})\ddot{Z} = F_{ex} - \int_{0}^{t} K(t - \tau)\dot{Z}(\tau)dt + \dots$ Heave added mass Excitation force Memory function for (e.g. from WAMIT) (from Spectrum & radiation forces (e.g. say WAMIT) from WAMIT) $\dots + F_H + F_{PTO} + F_V$ Eq. (1) Viscous damping force Hydrostatic force (from from Power Take Off load from CFD (e.g. OpenFOAM) wetted surface area) (PTO load)

WARDY ETical

Frederick CM. 2012. Wave power extraction by diberally arrays of Polarizating Energy Converters using WAMET software, Master of Science Plan B

Research Paper, ORE, University of Hawaii

		▲ 80 ¬	,	,			1	5000			1	1		1	1 1				
	-		-	_	-				10.11				P	eriod = 7s			10.000		
													-	-	-	-	1.25		
			artit						10.512		0	11 12 12		-			1.2		
			THE R	理論					調調		-200						-1.15		
- THE						-	開始構							-	_		-11	•	_
		田田田			一种印刷	期期				1	-400		(interest				1.1	310	
		lydro	dyna	amic	; 00	wer	mat	HX TC	or Pe	e <i>l</i> am	IS (k	(VV)		-			-1.05 G	2	
1999年1991年199	PTTT:	拍田招	HHH	扭出扭	HHHHH				1				1000				-1 ±		\perp
WAMIT Calculated(kW)	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5	13	T_e	
0.5																			
1		34.0	44.3	51.2	54.4	54.4	52.2	48.6	44.3	39.8	35.3	31.2	27.5	24.1					
1.5	49.9	76.5	99.6	115.2	122.3	122.4	117.4	109.3	99.6	89.4	79.5	70.3	61.8	54.3	47.6	41.8	36.7	750(kW) I	Max
2	88.6	135.9	177.1	204.7	217.5	217.6	208.7	194.2	177.0	159.0	141.4	124.9	109.9	96.5	84.6	74.2	65.2		
2.5	138.5	212.4	276.7	319.9	339.8	340.0	326.1	303.5	276.6	248.4	220.9	195.2	171.7	150.7	132.2	116.0	101.9		
3	199.4	305.8	398.4	460.7	489.4	489.6	469.5	437.0	398.3	357.8	318.1	281.0	247.3	217.1	190.4	167.0	146.7		
3.5		416.3	542.2	627.0	666.1	666.4	639.1	594.8	542.1	486.9	433.0	382.5	336.5	295.4	259.1	227.4	199.7		
4			708.2	819.0	870.0	870.4	834.7	776.9	708.1	636.0	565.6	499.6	439.6	385.9	338.5	297.0	260.8		
4.5			896.4	1036.5	1101.1	1101.6	1056.4	983.3	896.2	804.9	715.8	632.3	556.3	488.4	428.4	375.8	330.1		
5				1279.6	1359.4	1360.0	1304.2	1213.9	1106.4	993.8	883.7	780.6	686.8	602.9	528.9	464.0	407.5		
5.5				1548.4	1644.8	1645.6	1578.1	1468.9	1338.8	1202.5	1069.3	944.6	831.0	729.5	639.9	561.4	493.0)
6					1957.5	1958.4	1878.1	1748.1	1593.2	1431.0	1272.5	1124.1	989.0	868.2	761.6	668.1	586.8		
6.5					2297.3	2298.4	2204.1	2051.5	1869.8	1679.5	1493.4	1319.3	1160.7	1018.9	893.8	784.1	688.6		
7						2665.6	2556.3	2379.3	2168.6	1947.8	1732.0	1530.1	1346.1	1181.7	1036.6	909.4	798.6		
7.5							2934.5	2731.3	2489.4	2236.0	1988.3	1756.5	1545.3	1356.6	1189.9	1044.0	916.8		
8								3107.7	2832.4	2544.0	2262.3	1998.5	1758.2	1543.5	1353.9	1187.8	1043.1		
H_s																			

Ocean Research, **43**, 68-70, 2013.

Nihous, G.C., "Maximum wave power absorption by slender bodies of arbitrary cross sections in oblique seas," *Applied Ocean Research*, **47**, 17-27, 2014.

Development of a Numerical Wave Tank

- Goal: to allow computer simulations of wave energy converters (WECs) at laboratory and model basin scales
- This would enable the validation of WEC designs without extensive and costly experiments
- Methodology to date : use and modify an open source Computational Fluid Dynamics (CFD) solver (OpenFOAM)

- Experiments with flat plates (2D & 3D)
- Validation of the model started with a 2D simulation of Keulegan & Carpenter's seminal experiments (1958)
- The next step involved the modeling of 3D moving objects with prescribed motions, for which data sets have been published
- These cases are highly nonlinear, and relevant in realistic designs (e.g., heave plates)