Integration of Renewable & Distributed Energy Resources

Staci Sadoyama

Hawaii Natural Energy Institute School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822

7th International Conference on Integration of Renewable and Distributed Energy Resources

Niagara Falls, Ontario October 24-28, 2016

Hawaii's isolation poses serious risks

High Electricity <u>Price</u> and <u>Volatility</u> Linked to Overdependence and Cost of Oil

High Cost of Service

Hawaii ranks #1 in US electric energy costs:

45.85 cents/kWhLanai47.06 cents/kWhMolokai41.89 cents/kWhHawaii37.83 cents/kWhMaui35.48 cents/kWhOahu(Avg. Residential rates in 2014)

11 - 12 cents/kWh U.S. avg.

Source: Hawaiian Electric Company and Hawaii DBEDT

Renewable Energy Aimed to "Break the Link" and Lower Cost

Hawaii Retail Electric Rates 2015 – 2016 ¢/kWh

Hawaii's Progressive Leadership in Clean Energy <u>Policy</u>

2008

<section-header><complex-block><text><text><text><text><text><text><text><text>

Hawaii Clean Energy Initiative (HCEI)

The State of Hawaii, US DOE, and local utility launched HCEI in January 2008 to transform Hawaii to a 70% clean energy economy by 2030:

- Increasing Hawaii's economic and energy security
- Fostering and demonstrating Hawaii's innovation
- Developing Hawaii's workforce of the future
- Becoming a clean energy model for the U.S. and the world
- 2009 *Strong Hawaii Policies* <u>Highest</u> RPS Target in the United States

40% by 2030 (2015 - 15%; 2020 - 25%)

Other key policies:

- Tax incentives
- Retail Rate Net metering
- · Feed in tariffs

2011 *Policy Evolution Reflecting Market Realities ...*

Amended the definition of "renewable electrical energy" to include starting in 2015, customer-sited, grid-connected renewable energy generation

2015+ *Continued Policy Evolution* ...

- New RPS targets: 30% by 2020; 100% by 2045
- Net metering change wholesale rate sale

Source: State of Hawaii, "Hawaii Energy Facts & Figures," Hawaii State Energy Office, Honolulu, May 2016

Source: State of Hawaii, "Hawaii Energy Facts & Figures," Hawaii State Energy Office, Honolulu, May 2016

Hawai'i Natural Energy Institute (HNEI)

Advancing Renewable Energy and Grid Technologies

Renewable Power Generation

- Ocean Energy
- Photovoltaics

Energy Efficiency

• Sea Water Air

Conditioning

• Building Technology

Power Systems Optimization and Systems Integration of Renewables

- Grid modeling and analysis
- Smart grid and micro-grid R&D
- Application of grid storage

Grid System Technologies Advanced Research Team

Electrochemical Power Systems

- Batteries
- Fuels Cell

Alternative Fuels:

• Biomass, Biofuels, Hydrogen, Methane Hydrates

Established to develop, test and evaluate advanced grid architectures, enabling policies, and new technologies and methods for effective integration of renewable energy resources and power system optimization

Maui Island Leading the way in Wind and Solar Power

Maui Advanced Solar Initiative

US DOE & ONR funded, <u>HNEI led</u> project to develop and demonstrate advanced PV inverter functionality in a smart grid environment

UNIVERSITY of HAWAI'I

10

Field Performance & Data Mining

MĂNOA

Software sends control curves to adjust inverter

Technology Validation and Optimization

- Field survey and circuit modeling
 - Investigate / collect circuit information
 - Analyze and model circuit data and smart inverter functionality
 - Use model to develop and optimize smart inverter control algorithms and iterate with field operation and measured performance

Voltage Along the Feeder

Voltage Along the Feeder (cont.)

Time

UNIVERSITY of HAWAI'I"

MĂNOA

15

Real Power & Voltage

Magnitude of voltage effects on neighbor is dependent on sec ckt configuration

Lessons Learned: Inverter Standardization

- Real Power Curtailment
 - % of Inverter Rating
- Volt-Var Curve
 - Number of points
 - Y-axis = % of Available VARs, % of Max Vars, % of Max Watts
 - SMA = 50% of KVA rating
 - Hitachi = 100% of KVA rating (will reduce real power output)
 - Fronius = limited to power factor >= 0.85
 - Steepness of curve

Next Step Applications

- Smart inverters can be used to control voltage
- Voltage effects are dependent on:
 - Loading
 - Topology
- Development of control algorithms to manage voltage

Mahalo! (Thank you)

For more information, contact:

Grid System Technologies Advanced Research Team

Hawaii Natural Energy Institute School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822 Website: www.hnei.hawaii.edu

