

Ionic Liquid Based Sorbents for Acidic Gas Capture.

AFS: FILTCON 2018 Conference

Dr. Godwin Severa, PhD. MBA. Hawaii Natural Energy Institute University of Hawaii

> Prior Lake, Minnesota April 23-25, 2018

Ionic Liquid Based Sorbents for Acidic Gas Capture.

Outline

- Motivation of Research
- Background
 - Fuel Cell Air Contaminants Filtration
 - Ionic Liquids in Gas Contaminant Capture
- Experimental
 - Preparation of Supported Ionic Liquid Sorbents
 - Gas contaminant Sorption Testing
- Results and Discussion:
 - 1-ethyl-3-methylimidazolium acetate supported on activated carbon.
 - Single Gas contaminant Sorption: SO₂
 - Mixed Gas Contaminant Sorption: SO₂ and NO₂
- Conclusion
- Acknowledgements

Motivation

Development of advanced air filtration materials for fuel cell operations in harsh environments.

- Gaseous air contaminants (SO_x, NO_x, H₂S and VOCs) are detrimental to fuel cells.
- Potential of supported ionic liquids materials in reversible acidic gas capture.

Stringent fuel cell air requirements High air flow rates Low pressure drop Low air pollutant tolerant levels

Goal: Development of high performance, reversible air contaminant sorbents.

Background: Fuel Cell Air Filtration

Classic PEM Fuel Cell Air Contaminant Filters.

- Combine both dust and gas contaminant filtration
- Contains activated carbon impregnated with chemicals
 - Activated carbon effective for VOCs
 - Chemicals for effective removal of acidic gases, especially SO_2
- Low breakthrough capacity under harsh conditions
- Non reversible

Background: Ionic Liquid Based Sorbents for Air Purification

Characteristics of ionic liquids

- Negligible volatility
- Large liquidus range: 25-400 °C
- High viscosity
- Non flammable
- Tunable chemical properties

Advantages of IL in gas absorption

- Potential for reversible gas absorption
- Non volatile
- High gas pollutant sorption kinetics

Challenges of Bulky IL in gas sorption

- Poor gas contaminant permeation into the bulky
- Poor gas pollutant selectivity

Ionic liquid supported onto high surface area porous materials. ✓ Increase sorption kinetics, capacities and reduce sorbent waste.

B. Kirchner, Topics in current chemistry, in: B. Kirchner (Ed.) Ionic liquids, Springer-Verlag new york, 2009, pp. 40. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH Verlag, Weinheim, 2003. http://www.chem.uniromal.it,

Background: Ionic Liquid Syntheses Methods

- Metathesis reactions:
 - $[Cat][X] + MA \longrightarrow [Cat][A] + MX, M=H^+, [metal]^+, NR4^+; X = Halide ion$
 - Cation halide salts where reacted with either free acid of anion, organic salt or ammonium salt .
 - Room temperature, 24 hour reaction.
- Neutralization reactions:
 - $[R][OH] + MA \longrightarrow [R][A] + H_2O$
 - Cation hydroxide reacted with free acid of anion
 - Room temperature, 24 hours.
- Characterizations: Performed using NMR, FTIR, TGA-DSC

P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley-VCH Verlag, Weinheim, 2003.

Experimental: Process of Supporting Ionic Liquid onto Porous Materials

SEM images of pure and ionic liquid impregnated activated carbon (AC)

- Microporous and mesoporous activated carbon
 - Pore volume> 0.48 cm³/g
 - Surface area >1000 cm²/g

Impregnated AC maintains porosity after ionic liquid impregnation process.

Severa, G., et al., SO_2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chemical Engineering Journal, 2015. **265**: p. 249-258.

Experimental: Gas Contaminant Sorption Testing

Experimental conditions.

✤5-30 LPM purified air

✤2-15 ppm acidic gas contaminants (SO₂ and NO₂)

∻20-80 % RH @ 25 °C.

✤3 g samples.

Measurements

- Break through times
- Inlet and outlet gas pollutant concentrations (C_o and C_t)

Custom made air filtration material gas sorption testing stand.

Sulfur dioxide and nitrogen dioxide sorption testing of supported ionic liquids

Experimental: Impregnation of Ionic Liquids on Activated Carbon

Ionic liquid	Ionic Liquid Impregnated AC sorbent ID
1-ethyl-3-methylimidazolium acetate	EMA
1-ethyl-3-methylimidazolium lactate	EML
1-ethyl-3-methylimidazolium methyl sulfate	EMS
1-ethyl-3-methylimidazolium hydrogen sulfate	EMHS
1-butyl-3-methylimidazolium hydrogen sulfate	BMHS
1-butyl-3-methylimidazolium tetra fluoroborate	BMF
1-hexyl-3-methylimidazolium	
bis(trifluoromethylsulfonyl)imide	HMN
1-hexyl-3-methylimidazolium	
tris(pentafluoroethyl) trifluorophosphate	HMS
1-allyl-3-methylimidazolium chloride	AMC

AC impregnated with 36-38 wt% ionic liquid

Most of selected IL were previously reported to have high gas pollutant absorption capability in pure or ideal gas pollutant mixtures.

Results: Screening of Select IL Impregnated Sorbents

- Highest sorption capacity and break through time from 1-ethyl-3-methylimidazolium acetate impregnated activated carbon (EMA).
- EMA chosen as model impregnated ionic liquid sorbent for detailed study.
- Experimental conditions:
 15 LPM purified air
 15 ppm SO₂ contaminants
 50 % RH @ 25 °C.
 3 g samples.

- Break through times:
 - EMA>EML>HMN, EMS>AMC, HMS, BMHS >EMHS >BMF.

Results: Study of 1-ethyl-3-methylimidazolium Acetate Impregnated Activated Carbon sorbent

[C₂mim][Ac]-Activated carbon sorbents (EMA) chosen as model impregnated ionic liquid sorbent for detailed study.

Results: Effect of Ionic Liquid Loading on SO₂ Sorption

Wt % IL Loading	Break through time (min)	
12	3	
24	5	
31	13.5	
36	53.5	

Experimental conditions:
15 LPM purified air
15 ppm SO₂
50 % RH @ 25 °C.

 Higher IL loaded sorbents show better sorption capacity and breakthrough time.

Results: Effect of SO₂ Concentration on Sorption

Shorter sorbent breakthrough times at higher SO₂ concentration.

Results: Characterization of SO₂ Gas Absorption by FTATR

- New peaks observed after SO₂ sorption.
 - ► $U_{S=0}$: 1430 cm⁻¹ 1470 cm⁻¹.
 - ▶ $\mathbf{U}_{\text{S-O}}$: 973, 1070, 1170, 1220 cm⁻¹.

S-O vibrational frequencies indicate presence of chemically bound sulfur oxide species.

Severa, G., et al., SO_2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chemical Engineering Journal, 2015. **265**: p. 249-258.

Results: Characterization of EMA SO₂ Gas Absorption by DSC

Some products of EMA SO₂ sorption very stable.

Severa, G., et al., SO_2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chemical Engineering Journal, 2015. **265**: p. 249-258.

Results: Mechanism of SO₂ Capture by EMA: Chemisorption

- I. Absorption/Adsorption of SO_2 into IL and onto AC surface of EMA.
- II. Conversion of sorbed SO_2 to sulfate and sulfites (acids).
- III. Protonation of acetate by the strong acids.
- IV. Displacement of protonated acetate by the weak bases, HSO₃⁻ and HSO₄⁻

Mechanism derived from FTIR, thermal analysis and NMR data.

Severa, G., et al., SO_2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chemical Engineering Journal, 2015. **265**: p. 249-258.

Results: Comparison of EMA and 10 wt% KOH-AC in SO₂ Removal

Promising Supported Ionic Liquid Material for SO₂ capture

EMA sorbent performed better than the 10 wt% KOH-AC impregnated activated carbon material.

Severa, G., et al., SO_2 sorption by activated carbon supported ionic liquids under simulated atmospheric conditions. Chemical Engineering Journal, 2015. **265**: p. 249-258.

Results: Comparison of NO₂ Sorption by EMA and 10 wt% KOH-AC

EMA shows poor NO₂ sorption compared to 10 wt% KOH and pure activated carbon.

Results: Mixed Gas Contaminant Studies SO₂ and NO₂ Selectivity

30 LPM purified air
5 ppm SO₂ and 5 ppm NO₂

◆50 % RH @ 25 °C.

EMA shows higher selectivity and sorption performance for SO₂ compared to NO₂.

Results: DFT Molecular Modelling

Determine ionic liquid, [C₂mim][Ac], binding affinity for SO₂ and NO₂.

Results: Interaction of the Ionic Liquid [C₂mim][Ac] with SO₂ or NO₂

[C₂mim][Ac]: Stronger SO₂ binding compared to NO₂

Lower SO₂ binding enthalpy compared to NO₂

Adsorbate	ΔH	ΔG
XO _n on	(298 K)	(298 K)
[C ₂ mim][Ac]		
CO ₂	-34	-3
NO ₂	-30	5
SO ₂	-99	-48
SO ₃	-184	-127

Adsorption enthalpies and Gibbs energies (in kJ/mol) for XO_n binding

Results: Simultaneous Interaction of the ionic liquid [C₂mim][Ac] with SO₂ and NO₂

Higher affinity for SO₂ than NO₂ for ionic liquid [C₂mim][Ac]

Conclusion: Main Takeaways

- Supported ionic liquids absorbents can perform greater than potassium hydroxide-activated carbon materials.
- Potential for synergistic SO₂ sorption by ionic liquid and activated carbon support.
- Possible to determine mechanisms of SO₂ sorption by ionic liquids materials using a combination of techniques.
- Important to evaluate potential ionic liquids absorbent materials under simulated real world conditions.
- Computational work confirm experimental data of higher selectivity for SO₂ compared to NO₂ by EMA ionic liquid.

Acknowledgement

- Prof. John Head
- Mr. Keith Bethune
- Dr. Scott Higgins
- Dr. Richard Rocheleau
- Aaron Fugise

Funding: Office of Naval Research (APRISES 2013)

Thank You

Contact information: Dr. Godwin Severa PhD. MBA. severa@hawaii.edu

