Hydrogen Energy Systems as a Grid Management Tool

Mitch Ewan

Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii

2018 NELHA Energy Storage Conference December 6, 2018

Grid Frequency Management

- ✓ Electric power grids operate at a frequency of 60 Hz;
- ✓ Deviation from 60 Hz is a measure of the load balance of the grid – load matched to generation;
- With increased penetration of intermittent renewables on the grid the supply and grid frequency may be subject to fluctuations;
- Grid operators can stabilize the frequency by ramping power generation up/down or controlling variable loads or storage;
- Project Thesis: An electrolyzer can be used as a variable controllable load that can be reduced/increased in order to maintain the total load balance and frequency stability.

Project Objectives

- Validate the performance, durability & cost benefits of grid integrated hydrogen systems;
 - Demonstrate dynamic operation of electrolyzers to mitigate impacts of intermittent renewable energy;
 - Demonstrate potential of multiple revenue streams from monetization of ancillary services and producing hydrogen;
 - Supply hydrogen to shuttle buses operated by County of Hawaii Mass Transit Agency (MTA), and Hawaii Volcanoes National Park (HAVO);
- Support development of regulatory structure for permitting and installation of hydrogen systems in Hawaii.

Concept

HNEI's concept to use an electrolyzer to provide grid ancillary services such as up-regulation, down-regulation, and off-peak load.

Central Site Production/Distributed Dispensing

Economically viable electrolytic hydrogen will require low cost electricity + high capital utilization.

- Central site production for highest capital utilization;
- ✓ Distributed dispensing sites with minimum complexity to reduce fuel distribution costs;
- Optimize additional revenue streams from:
 - > Quantify and monetize ancillary services;
 - Sale of hydrogen for transportation.

Use of Electrolyzer for Grid Ancillary Services

Grid Frequency (Hz): Measured with battery off (black) and on (red) at twenty (20) minute intervals

- HNEI demonstrated ability to regulate grid frequency on 150MW grid with a fast-acting 1MW battery;
- Cycling tests suggest electrolyzer more appropriate for slower-acting changes;
- Battery/electrolyzer hybrid may provide grid services across broad range of operating conditions;
- Using electrolyzer as a variable load as opposed to battery allows effective use of CAPEX plus other value added services.

Central Site Production Located at NELHA

- State of Hawaii facility:
 - Strong political & financial support;
 - Significant cost share provider;
 - Leverages available technical staff.
- Ease of permitting;
- Existing infrastructure reduces site costs;
- > Kona Airport offers opportunity to leverage project:
 - Airport ground handling equipment;
 - Airport shuttle buses;
 - Rental cars.
- Supports NELHA Vision of a "Hydrogen Hub";
 - Provides "enabling" infrastructure to attract new projects.

NELHA Hydrogen Site Layout

Site Preparation

Excavation

Concrete Pad

Equipment Installation

Setting Equipment 20-ton Lift

Site Work Completed

Site Work Completed

Tube Trailer Filling Bays

Converted 3 Fuel Cell Electric Hybrid Buses

County of Hawaii Bus (1) 29 Pass

HAVO Bus (2) 19 Pass

- Hawaii MTA Fuel Cell Electric Hybrid Shuttle Buses demonstrate to the general public the advantages of fuel cell buses and electric drive.
 - > Quiet ride;
 - No diesel fumes;
 - Potential for lower O&M costs (need low cost hydrogen).
- HAVO Buses will demonstrate HNEI's "Smart" air filtration sensor systems in a high air contaminant environment.* (Funded by ONR).

Recertified 3 Hydrogen Transport Trailers

- Hydrogen Transport Trailer carries 105 kg @ 450 bar;
- Demonstrate distributed dispensing using cascade fill to 350 bar using a "Smart" dispenser;
- Trailer O&M costs will be evaluated including US DOT hydrostatic testing requirement every 5 years;
 - > Currently no facility in Hawaii can hydro test cylinders of this size:
 - Must be shipped to mainland (very costly and time consuming);
 - Recertified Trailers before shipping to Hawaii to give us a full 5year window.

Collaborations

- ✓ US Department of Energy: Project Sponsor & Funding;
- ✓ **Vaval Research Laboratory: Federal Technical Program Manager;**
- ✓ Hawaii Natural Energy Institute: Implementing Partner, Technical Lead;
- ✓ Office of Naval Research: Supplemental Funding;
- ✓ State of Hawaii HSDC: Public Outreach, Significant Cost Share;
- ✓ Natural Energy Laboratory Hawaii Authority: Host Site; Site Work, Cost Share
- ✓ County of Hawaii MTA: Host Site, Bus Operator (Cost Share);
- ✓ Hawaii Volcanoes National Park: Host Site, Bus Operator;
- ✓ HCATT: Conversion of Shuttle Bus, Cost share;
- ✓ US Hybrid: Conversion of Shuttle Bus, Cost share;
- ✓ HELCO: Interested Observer, Potential Partner for Grid Analysis;
- ✓ Hydrogen Safety Panel: Design Hydrogen Safety Review;
- ✓ PNNL: First Responder Training (Cost Share);
- ✓ Boyd Hydrogen: Site Hydrogen Safety Review, Permitting Department Workshop.
- ✓ Proton Onsite: Electrolyzer Control System
- ✓ Aloha Petroleum: Hydrogen Delivery

