

IBA 02 - Characterization, Testing, Data Analysis, Protocols, and Procedures Battery Durability and Reliability under Electric Utility Grid Operations

Matthieu Dubarry, A. Devie, & G. Baure

matthieu.dubarry@gmail.com

1680 East West Road, POST 109, Honolulu, HI 96822 Ph: (808) 956-2349 ● Fax: (808) 956-2336

Battery Durability and Reliability under Grid Operations Integrate field data with lab testing to predict lifetime BESS

Hawaiian Electric

Grid**START**

Objective/Significance

Evaluate degradation & lifetime of BESS in support of grid scale deployment Improve economic understanding of future commercial & base deployments

Approach

Assess battery performance in BESS and under controlled conditions Analyze degradation using non-destructive methods Link controlled and deployed degradation to forecast remaining useful life

Battery Durability and Reliability under Electric Utility Grid Operations Usage analysis

Battery Durability and Reliability under Electric Utility Grid Operations Laboratory testing – Cycle aging

Battery Durability and Reliability under Electric Utility Grid Operations Laboratory testing – Cycle aging

Design of experiment methodology

Temperature increase responsible for most degradation, followed by current increase and SOC swing <u>decrease</u>.

Battery Durability and Reliability under Electric Utility Grid Operations

Laboratory testing – Calendar aging

Battery Durability and Reliability under Electric Utility Grid Operations HNEI custom analysis: Incremental capacity analysis

Composite PE: LCO+NCA No access to individual components Fit with reference materials

Emulation of degradation modes on voltage: - Loss of lithium inventory (LLI),

- Loss of active material (LAM) on positive and negative electrodes (PE & NE).

Battery Durability and Reliability under Electric Utility Grid Operations HNEI custom analysis: Incremental capacity analysis

Mechanistic modeling: Use fit to predict voltage response under different degradations

Assessed the impact of each active component of the cell

M. Dubarry et al. / Journal of the Electrochemical Society, in preparation

Battery Durability and Reliability under Electric Utility Grid Operations Incremental capacity analysis – Cycle aging

Degradation is much more important than that shown by capacity loss

Use mechanistic understanding to predict capacity fade

Use IC curves to quantify LAM_{NE}, LAM_{PEs} and LLI

Battery Durability and Reliability under Electric Utility Grid Operations Incremental capacity analysis – Calendar aging

Use IC curves to quantify LAM_{NE}, LAM_{PEs} and LLI

M. Dubarry et al. / Journal of the Electrochemical Society, in preparation

Battery Durability and Reliability under Electric Utility Grid Operations Conclusions & Perspective

Conclusions

Found major impact for temperature, and SOC swing

Explain spread observed in the field?

Big degradation despite small capacity losses

Significant LAM_{PE} (both components) and LLI. Not yet associated with capacity loss Path dependent degradation: different signature cycle / calendar and T / SOC.

Perspective

Model performance based on laboratory testing

Compare lifetime performance model to field data to determine BESS SOH

Optimize BESS control strategies to limit degradation

Acknowledgments

This work was supported by the Office of Naval Research (ONR) Asia Pacific Research Initiative for Sustainable Energy Systems (APRISES), award # N00014-13-1-0463 and N00014-16-1-2116.

Hawaiian Electric

Electric

The authors are grateful to the Hawaiian Electric Company for their ongoing support to the operations of the Hawaii Sustainable Energy Research Facility.

Thank you for your attention! Questions?

matthieu.dubarry@gmail.com

Battery Durability and Reliability under Electric Utility Grid Operations Incremental capacity analysis – Calendar aging

Aging path dependence

Calendar aging induces different degradations Significant degradation despite small capacity loss

13

Different that cycle aging degradation Highlight importance to test a particular battery for a given application

Battery Durability and Reliability under Electric Utility Grid Operations Field data

Oʻahu, HI (grid: 1.1TW) 1MW/250kWh, Commissioned in February 2016 Altairnano GEN2 60Ah cells, 384(7P)S1P Volt-VAR, Power quality Moloka'i, HI (grid: 5.5MW) 2MW/330kWh, Commissioned in February 2016 Altairnano GEN2 60Ah cells, 416(7P)S1P Reserve, Fault response

Hawaiian Electric

Big Island, HI (grid: 190MW) 1MW/250kWh, Commissioned in December 2012 Altairnano GEN1 50Ah cells, 384(7P)S1P Frequency regulation, Wind Smoothing

HAWAII

Demonstrated over 8000 full cycles equivalent operation