
Big data for lithium-ion battery diagnosis and prognosis

Introduction
Accurate lithium-ion battery diagnosis and prognosis is critical to increase penetration of electric vehicles and grid-tied storage systems.
Diagnosis and Prognosis are complex tasks due to the intricate, nonlinear, and path-dependent nature of battery degradation.

The development of Data driven methods for Li-ion battery diagnosis and prognosis is a growing field of research for the battery community.
A big limitation is usually the sizes of the training datasets which are typically not fully representative of the real usage of the cells.

The aim of this work to provide the battery diagnosis and prognosis AI community with comprehensive synthetic data sets that can be used for statistical or deep learning methods.
This work also provides a detailed statistical analysis of the datasets. Accurate diagnosis as well as early prognosis were demonstrated using the combined information of three learnable parameters.

Objective & Significance

Building Synthetic Voltage vs. Capacity Datasets 

Man-Fai Ng et al., Nature Machine Intelligence, 2(3) p. 161-170 (2020)

Gathering experimental data is extremely costly and time consuming. As a result, most 
studies only test a small number of batteries to validate their algorithms. This is vastly 
insufficient because Lithium ion battery degradation is path-dependent and small changes 
in conditions were shown to lead to drastic differences in durability. This path dependence 
is an essential aspect to consider for the validation of diagnosis and prognosis tools. 
With a limited set of training data, the universality of the tool cannot be validated.

Dubarry M. et al., Journal of Power Sources 479 (2020) 228806

Aylol et al., Journal of The Electrochemical Society, 2021 168 030525

Using the Datasets: Diagnosis
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Dubarry M. et al., Journal of Power Sources 479 (2020) 228806, Dubarry, M., et al. (2017)., Journal of Power Sources 360: 59-69.

1 year of testing 0.01s of calculation

Mendeley Data, 2020; Vol. 2021, 10.17632/6s6ph9n8zg.3
Mendeley Data, 2020; Vol. 2021, 10.17632/bs2j56pn7y.3
Mendeley Data, 2021, 10.17632/2h8cpszy26.1
Mendeley Data, 2021, 10.17632/pb5xpv8z5r.1

Published datasets:
>125,000 unique LLI/LAM  evolutions with at most 1 curve every 
100 cycles (> 3,000,000 V vs. Q curves total).
8 parameters varied following  the %deg = a ×cycle+ e(b×cycle)-1)  

equation for LLI, LAMNE, & LAMPE plus a delay for the exponential for 
LLI (to simulate random knees) and 3 different plating reversibility 
(0, 50, 100%).

Building Synthetic Duty Cycles Datasets

Published datasets:
>5,000 [LLI,LAMPE,LAMNE]
Combinations with at 
least 0.85% resolution.
This equates to 700,000 V 
vs. Q curves each  for LFP, 
NCA, NMC811 vs. graphite
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Online databases, like battery archive, and initiatives like battery data genome are steps in 
the right direction, but state of the art is far from the big data needed to make AI work. 

A possible solution is transfer learning to 
supplement experimental data with synthetic 
data englobing the entire degradation 
spectrum.

Degradation modes and Mechanistic Modeling Approach
Degradation modes refer to the impact of a mechanism rather than its root cause.
Every degradation mechanism will impact the amount of material able to react, the
amount of lithium able to go back and forth between the electrodes, and/or the
overall reaction kinetics.
As such, three main families of degradation modes can be defined: loss of active
material (LAM), loss of lithium inventory (LLI), and kinetics changes.
LAMs and kinetic limitations must be decomposed further at the electrode or
electrode component levels for blends. Kinetic limitations must also address
polarization and transport separately.

Generating such a variety of duty cycles will require a modeling approach that is not 
calculation intensive and easy to parameterize.  Forward looking models, like traditional 
physics based models, might not be adapted because they require to parameterize 
equations for a wide variety of degradations. The backward looking mechanistic approach 
might be more adapted because it relies on emulating degradation modes.

Dubarry, M.; Truchot, C.; Liaw, B.Y J. Power Sources 2012, 219, 204-216, doi:10.1016/j.jpowsour.2012.07.016

Full cell emulation is based on half cell data for each electrode (or each
component of a blend) at different rates.
It only requires a few parameters:
- The loading ratio (LR), the electrodes capacity ratio,
- The offset (OFS) that corresponds to the electrode slippage,
- The rate for each electrode (or component of the blend),
- The resistance for each electrode (or component of the blend).

LAMs are emulated by changing the size of one electrode compared the
other one and by adjusting the rate.
LLI is emulated by increasing the offset. This is because LLI is increasing
the slippage between the electrodes.
Plating is emulated by considering the NE as a blended electrode
Plating irreversibility is simulated by increasing LLI

Using the Datasets: Prognosis

From the mechanistic approach point of view, each thermodynamic degradation can be described by a unique
combination of the [LLI, LAMPE, LAMNE] triplet.

The [LLI, LAMPE, LAMNE] triplets can be normalized so that their sum is equal to one and then can be
represented in a ternary diagram. Scanning every possible combination of the triplet for all degradation extent
yields any potential degradation from which the voltage response can be reconstructed.
This provides infinite training data for diagnosis.

ry, M., et al. (2017)., Journal of Power Sources 360: 59-69.
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Conclusions & Perspective
Proof-of-concept methodology to generate big data training datasets,
Methodology could be applied to different conditions such as rate and temperature,
Can handle lithium plating with adjustable reversibility,
Ideal to test validity of different approaches for diagnosis or prognosis,
Accurate data based diagnosis & prognosis were proposed without needing AI algorithms.

This approach does not remove the need for experimental testing; it is still essential, and the
only way, to decipher which conditions cater to specific degradation.

Any opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
those of the sponsor.

In this work, a duty cycle is defined as a unique evolution of the
triplet values (and of other parameters if blends or kinetics are
involved). This allows to simulate duty cycles without the
knowledge of what conditions could have lead to such
degradation (rate, DOD, cutoffs, temperature…).

The triplet values could be calculated, per example, for different
linear degradation paces, with paces linear combined with
exponential variations, or with a delayed exponential increase,
more representative of the real degradation of commercial cells.

Since the voltages associated with all the triplet values were
already calculated for diagnosis, no additional simulations are
actually necessary as the different degradation paths were all
already calculated. They can be reconstructed by following the
evolution of the triplet values in the ternary design space and the
corresponding voltage and capacity variations can be accessed.

It has to be noted that 
investigating blends and 
higher rates where kinetics 
and resistance needs to be  
considered will add 
parameters. This work only 
discuss thermodynamic 
degradations.

Tracking features of interest (FOI) is a
proven method to reach diagnosis.
However, when tested over entire
dataset, a single FOI is never enough
to get a good diagnosis.
Considering the variations of 3 FOIs
together provides better accuracy.

For the >125,000 LFP duty cycles, the
mean diagnosis error was always
below 0.8% when using FOIs 1,2, & 4
together.
Independent study showed that our
FOI based method is more accurate
than data-driven ones.

The insets presents the standard
deviations at cycles 100 and 400. This
reveals the impact of the degradation
mix on the accuracy of the approach.

Many methods have been proposed in the literature for early prognosis.
The variance between cycle 1 and 100, the overall capacity loss and FOI1 for LFP
are among the most used for a single point prognosis.

Correlations lower than reported where observed when tested on full datasets.
Insets show that the correlation is better on some subsets (e.g. 0.9 for high LLIs for
variance). This showcase the importance of testing on a varied dataset.

Prognosis established from diagnosis at different cycles shows better results with
much higher correlation coefficients. They were established by fitting the
evolution of LLI and LAMs using different cycle ranges and functions.

Beck. D., et al.Energies 2021, 14, 2371. 

Correlation coefficients

Prognosis using diagnosis at
cycles 1 to X using a linear +
exponential fit (L+E), a power
fit (P) or a linear fit (L)

Mayilvahanan, K., et al. (2021), Batteries & Supercaps 2021, 
10.1002/batt.202100166  
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