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To address .the challenges encountered in the early stages of All experiments were conducted using the HNEI 1. Potential cycling (CV-induced) 9
commercializing proton exchange membrane fuel cell (PEMFC) technology, || segmented cell system [7]. The segmented cell 1) stop the load Single
it is essential to enhance durability and ensure reliability of fuel cells in real- || system consists of the hardware, a current 2) purge the cathode with N, Load | cell
world environments. Since ambient air is typically used for PEMFC transducer system, and a data acquisition device. 3) run CV from 0.1 to 1.2 V, 10 cycles, PXI Box STE_S‘
operation, common airborne contaminants such as NO,, SO, and volatile The setup is operated as a single cell using a 20mV s, o Lation
organic compounds from natural and anthropogenic sources can negatively || Standard fuel cell test station. The hardware 2. 0, purge recovery —_ seom, Gl |
impact PEMFC performance [1]. While the performance loss can be self- c?r11t0a|ned a stegmented ft'F’WIf'Ef"d" which ;onsstt::d 1) stop the load L: p— :J
recovered by operating the fuel cell with pure air, this simple procedure is o1 11 segments consecutively Tollowing the pal 2) purge the cathode with N, (1.5 | min'') =
L L2 " N N of the 10-channel serpentine. Each segment has ) - =
not efficient for certain impurities. For instance, SO, partially reduces to an area of 7.6 cm? and consisted of its own 3) purge the cathode with pure O, (4.5 | min') ==
elemental sulfur on the Pt surface under fuel cell operating conditions and distinct current collector and GDL. 4) repeat N, and O, purges 5 times.
cannot be fully removed by pure air alone [2]. Only special treatments of the MEA properties e —
. . : [PPPRO prop :
contaminated cathode can lead to partial or full recovery of PEMFC Anode/Cathode (An/Ca) operating conditions: Gore. 100 cm2. 0.1/0.4 2 25 BC. 125 et
performance [3-6]. This work aims to comprehensively analyze several H,/Air, 2/2 stoi, 100/50%RH, 150 kPa, 80°C ore, 100 cm?, 0.1/0.4 mgp, cm™, » 129 pm gaske
recovery procedures for PEMFCs exposed to SO,. 5 ppm SO,, i=0.4 and 1.0 A cm?2 Cathode segmented
CV-induced recovery O, recovery Mechanism of SO, impacts [2, 8, 9] and ORR
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Initial cell voltage of the samples (V,) during exposure to SO, (Vsoy), self'rec_overy (Vaettrec), 1. The injection of SO, caused a decrease in voltage response 1. SO, in air stream adsorbed on Pt and caused a decrease in
after recovery procedure (V,.), performance drop (AV) and recovery as a ratio b/w V.. and V,. with inflection point. available ECA and shift of ORR mechanism from 4 e to 4 + 2 e-.
Sample i [A cm?] | Recovery Vo[V V02 IV | Vigsiree V1| Viee [VI | AV[mV] | Recovery [%] 2. SO, impact on i g 2. Ads'or;')!ior'l of SO, led to voltage drop and local current
MEA-0.4-CV 0.4 cv 0.750 | 0497 | 0.570 | 0.710 40 95 3. Atthe s;“:‘;‘;:':?_;::"f"":':g: was 0.497-0.500V for 0.4A 3 'Eelg's""b":o"". o AT (RS
MEA-1.0-CV 1.0 cv 0.675 | 0.355 | 0.465 | 0.562 105 84 em=and 0.355:0.378 Vfor 1.0 em™. ek ctoieductonjoliSbeceusiatiow]patanta Rl ol
MEA0.40 04 ° 0.750 0.500 0.574 0.710 40 P 4. 0 in pure air in partial recovery. the formation of SO.
e - 2 purge - - - - 5. CV-il and O, recovery procedures revealed the same 4. To ensure full recovery, the cathode potential had to be high
MEA-1.0-0, 1.0 O, purge | 0.675 0.468 0.468 0.565 110 84 results: 95% recovery for 0.4 A cm2 and 84% for 1.0 A cm2. enough (>0.9-1.0 V) to oxidize S° to soluble products.
CV-induced recovery. Total cell data O, recovery. Local data WEA 100, « The positive currents at Seg 14 || Conclusion
MEA-0.4-CV MEA-1.0-CV NI indicated that the regular fuel — -
| Totatcon 20| Totalcat ass v ARV £ | we. cell reactions, ORR and HOR, +Toremove S g sp the
i TR € TR \_‘ g occurred at the cathode and potential needs to be increased to values where
é ® SO} +BH" +6e” + PL Ea SO§+BH" +6e” + PL s 2 0 anode, respectively. electrooxidation of SO, and S° can occur, >0.8-0.9 V.
> z -3 * Negative current indicated « The work evaluated the effectiveness of two recovery
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E o g = § Z:::z::“(;::::‘z’;s aelnlhe methods: potential cycling and O, purge.
£ H ot p yaeni «The potential cycling at the cathode was performed
£ -10] 5 -10] cycle2 evolution, carbon corrosion or N
3 3 — cycle 3 sulfur oxidation) from 0.1 to 1.2 V vs potential at the anode and at H,/N,
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Potential [V] Potential [V] v e — o y— p— e T suliur oxidation was ~10-15 mA The:- 0_2 recovery procedure includes repetitive
— ——Seg6  Seg7,— Sog8— Seg9 — Seg 10 e st cm? and could have been variation of cathode feed gas from N, to O, at a flow
CV data show'two Sads OXidation peaks at 0.95-0.98 and 1.05 V. The ——Segh. SegT.——Sagh.——Segs.—Seg 10 overlapped by larger currents rate of 4.5 | min"!, which ensures potential variation at
peaks are attributed to weakly and strongly-adsorbed S on Pt [10-12]. produced at the start-up. the cathode from 0.1 to 0.98-0.99 V.
CV-induced recovery. Local data - P (EBET (]
MEA1.0CV Y BOT and EOT comparison + The current density of SO, exposure determined substantial recovery of the cell performance, with up
— s Ty o ey the final performance after the recovery. to 95% recovery efficiency for fuel cells contaminated
E’ 5 01 Eopvitie mtypni 04 « The cell contamination to SO, at 0.4 A cm? at lower current densities (0.4 A cm) and 84% at
i g tamigotise o affected the middle part of MEAs more (70 mV) higher current densities (1.0 A cm?).
3 [ e e A% | ! compared to the inlet and outlet (10-30 mV). +0, purge technique seems to be more suitable for
|3 S== o) "
A_E__ Fa1 4 + Operation of the MEAs and exposure to SO, at practical operation. The O, purge recovery does not
g EP o g MEAIOCY 1.0 A cm? led to a performance drop of 30-50 require auxiliary equipment and can be applicable for
© g 235 6TBON S lzraseTeet mV for the inlet Seg 1-3, while Seg 4-8 field operation.
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