

ONR Electrochemical Materials Program review 2024

Improved non-invasive techniques to understand Li-ion battery performance *Blended electrodes*

Matthieu Dubarry and David Beck

matthieu@hawaii.edu

Improved non-invasive techniques for Li-ion batteries

Introduction

Noninvasive diagnosis & prognosis tools are needed to accelerate the deployment of Li-ion and Na-ion batteries.

Simple cells are well understood but the reality if often more complex.

Investigation of three types of blending:

Blended electrodes

i.e. electrodes with two or more active materials (NMC/LMO, Graphite/SiOx...)

Inhomogeneities

An inhomogeneous electrode could be seen as a blend between electrodes not quite identical

Plating

When plating occurs, the NE becomes a blend between the AM(s) and the charge carrier

Improved non-invasive techniques for Li-ion batteries

Mechanistic modeling

General Principles

Blended electrodes

In a blended electrode, each dV must consider the dQ from each component. Summing the dQ/dV = f(V) responses.

Calculate IC constant current response for each component and sum them Proposed in 2012

Is it realistic? If not, how should it be handled? Impact of chemistries?

Blended electrodes

Clearly not that simple.

Simulation tools must adapt to chemistry

Heubner, C., et al. (2018), Journal of Energy Storage **20**: 101-108. Liebmann, T., et al. (2019), ChemElectroChem **6**(22): 5728-5734.

Need to implement a paralleling model to take that into account:

Accurate but x100 calculation time & noisy

Blended electrodes

Blend simulations: Constant current vs. paralleling

3 case figures: Separated, overlapping, and partially overlapping responses

Small differences at low rates. More significant for high-rate simulations

Blended electrodes

Blend simulations: LAM_{PE} quantification

Many studies do not differentiate the components upon aging

BUT LAM_{PE} composition has a huge impact on electrochemical response:

Lithium and Sodium Plating

Plating modeling is available in the modeling framework

BUT overly simplified with a 0V infinite plateau.

Other problem is the lack of data for end-of discharges for high rates

Leads to inaccurate early plating predictions

Lithium and Sodium Plating

Experiments:

Is lithium plating potential rate dependent?

Is it rate or current dependent?

Is it the same for sodium plating?

Lithium and Sodium Plating

Preliminary results:

RPTs can be extended with a rate dependent end of discharge cutoff
Rest dV/dt analysis showed no sign of stripping

Better plating modeling with new parameter: the plating resistance

Inhomogeneous Electrodes

Inhomogeneities are a well-known issue

But their modeling isn't...

Inhomogeneous Electrodes

Same strategy as for degradation: Inhomogeneity modes

Inhomogeneous Electrodes

Paralleling should help but at which level?

Full cell level?

Electrode level?

Or both?

Inhomogeneous Electrodes

Summary

6/9 inhomogeneity modes have almost no impact on performance

BUT rate is affected, might influence degradation down the line...

3/9 inhomogeneity modes has impact. R_{NE} most resemble what reported in literature.

Inhomogeneous Electrodes

Summary

6/9 inhomogeneity modes have almost no impact on performance

BUT rate is affected, might influence degradation down the line...

3/9 inhomogeneity modes has impact. R_{NE} most resemble what reported in literature.

Inhomogeneous Electrodes

Summary

6/9 inhomogeneity modes have almost no impact on performance

BUT rate is affected, might influence degradation down the line...

3/9 inhomogeneity modes has impact. R_{NE} most resemble what reported in literature.

Inhomogeneous Electrodes

Quantification

Impossible for 6/9 when mild randomly distributed variations

Might be possible at beginning of regime for the SOC ones

For R_{PE}, resemble impact of rate degradation factor

Quantification impossible
BUT simulation already implemented
Close to experimental observations

Li-ion batteries Digital Twins

Mechanistic modeling

Validated

Mechanistic Modeling Approach

n Under validation

Degradation mode diagnosis

LLI, LAMs, Kinetics

Material based prognosis

With knee or not

Plating, reversible or not

Electrochemical responses

Constant current

Simple blends

Overdischarge

Overcharge

Big Data

Low rates

Feature of Interest Tracking

Electrochemical responses

Na-ion and other chemistries

Advanced blends

Voltage fade

Inhomogeneous electrodes

Large battery packs

Dynamic duty cycles

Big Data

High rates

Temperatures

Blends

Non-continuous duty cycles

'alawa: Hawaiian for "to diagnose by insight"

Li-ion batteries Digital Twins

Graphical user interface: the 'alawa toolbox

~ 200 registered users from >115 organizations worldwide

Acknowledgments

All my students

Current and past Funding:

Mahalo for your attention! Questions?

Inhomogeneous Electrodes

Inhomogeneity modes $\pm 5\%$ of randomly distributed Q_{PE} and Q_{NE}

Inhomogeneous Electrodes

Inhomogeneity modes $\pm 50\%$ of randomly distributed Rate_{PE} and Rate_{NE}

Inhomogeneous Electrodes

Inhomogeneity modes $\pm 50\%$ of randomly distributed R_{PE} and R_{NE}

Inhomogeneous Electrodes

Inhomogeneity modes $\pm 5\%$ of randomly distributed SOC_{PE} and SOC_{NE}

Inhomogeneous Electrodes

Inhomogeneity modes $\pm 2.5\%$ of randomly distributed Offset and all together

