OBJECTIVE: The goal of this project is to demonstrate the capabilities of an advanced control system for an artificial intelligence (AI)-based microgrid incorporating distributed solar and energy storage to optimize energy management, reduce costs, and improve resilience of the seawater distribution system at the Hawai‘i Ocean Energy, Science & Technology (HOST) Park. The microgrid control system has been designed with the potential capability to provide comprehensive energy management of the entire 900-acre HOST Park where more than 40 companies operate business/pilot sites.

BACKGROUND: HOST Park is a unique outdoor demonstration site for renewable energy, aquaculture and other ocean-based sustainable technologies. The demonstration site is in a section of the Park that includes three sets of pipelines capable of delivering up to 100,000 gallons per minute of cold seawater from depths of 3,000 ft. The innovative green economic development park is administered by The Natural Energy Laboratory of Hawai‘i (NELHA), an agency of the State of Hawai‘i. Interruptions in electrical service have the potential to irreparably damage the businesses that depend on the seawater for their agricultural and production requirements. The proposed microgrid, with AI capability, is intended to reduce utility costs and reduce or eliminate outages of the seawater pumping system.

The Hawai‘i Natural Energy Institute (HNEI) conceived the project, initiated efforts to apply for Korea Institute of Energy Technology, Evaluation and Planning (KETEP) grant funding, and helped form the consortium of United States and Korean participants. In 2018, KETEP awarded the project team a grant of KrW 1,940 million, approximately USD 1.73 million via the Korea Ministry of Trade, Industry, and Energy as part of their International Energy Collaborative Research and Development Program. The project entails a detailed design, deployment, testing and evaluation of a AI microgrid that includes photovoltaic (PV) panels and battery energy storage systems (BESS) at the HOST Park.

PROJECT STATUS/RESULTS: HNEI supports the microgrid development project by advising on requirements for grid interconnection between the proposed HOST Park microgrid and the HELCO grid, including the potential applicability and impacts of microgrid service tariffs; functional requirements and use cases for the microgrid; and project team engagement with the engineering, procurement and construction (EPC) and financial contractors. Ground breaking is expected to take place in the first quarter of 2021 with the microgrid to be operational in the final quarter of 2021.

Funding Source: KETEP (subcontract with Encored, Inc.)

Contact: Mark B. Glick, mbglick@hawaii.edu

Last updated: October 2020
ADDITIONAL PROJECT RELATED LINKS

PAPERS AND PROCEEDINGS:

PRESENTATIONS:
1. 2019, M.B. Glick, **Smart Grid and Microgrid for Archipelagic Communities - Power Play of Policy-Industry-Capacity-Infrastructure**, Presented at the 5th ASEAN Smart Grid Congress, Johor, Malaysia, December 4.