Technologies for Energy
Efficient Buildings

Prepared for the

U.S. Department of Energy
Office of Electricity Delivery and Energy Reliability

Under Award No. DE-FC26-06NT42847
Hawai‘i Distributed Energy Resource Technologies for Energy Security

Subtask 8.4 Deliverable

By

GE Global Research
Niskayuna, New York

And

Hawai‘i Natural Energy Institute
School of Ocean and Earth Science and Technology
University of Hawai‘i

December 2009



Acknowledgement: This material is based upon work supported by the United States Department of
Energy under Award Number DE-FC-06NT42847.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference here in to any specific commercial
product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.



Section
Number

2.1
2.2

3.1

3.2

3.3
3.4

Table of Contents

Section
Title

Executive Summary

Background

Prior Energy Management Technology Development

Project Objectives
Technical Results of Tasks and Deliverables

Requirement Definition

3.11

3.1.2
3.1.3

System Communication and Controls Architecture

Software Architecture / Hierarch
System Functional Requirements

3.1.3.1 Energy Optimization System (EOS) Requirements

3.1.3.2 Requirements of Self-learning and Adaptive Home Models
Integrated into EOS

3.1.3.3 Functional Requirements of Utility Feedback Analytics

3.1.3.4 Requirements of Planning Algorithms for Smart
Appliance Coordination

3.1.3.5 EOS to Smart Appliances

3.1.3.6 Smart Appliances to EOS

Self-learning and Adaptive Algorithms

3.2.1 Background
3.2.2 System ldentification Algorithm
3.2.3 Results
3.2.3.1 Assess the benefit of system ID
3.2.3.2 Improve system ID performance
3.2.3.3 Test system ID robustness
Feedback Analytics

Smart Appliance Coordination

3.4.1 Direct Load Control and Smart Appliance Coordination Algorithms

Page

~N o o1l wwww NN

3.4.2 Smart AMI Meter & EOS Communication Interface Implementation 29

3.4.2.1 Direct load control (DLC) request / command, including
programmable communicating thermostat (PCT)

Number



3.4.2.2 Critical peak pricing (CPP)
3.4.2.3 Total electrical energy consumption
3.4.2.4 Consumer alert messages

3.5 Laboratory Testing and Analysis
3.5.1 Laboratory Test Setup
3.5.2  User Control Options of the Test Scenarios
3.5.3 Direct Load Control for Emergency Load Shedding
3.5.4 Reducing Peak Power Demand by Utilizing Critical Peak Pricing

Signal

3.5.5 Energy Optimization by Running the Energy Optimizer

3.6. Project Benefits

4. Glossary / Acronyms and Abbreviations

5. References

32
33
33

34
36
37
39

39
43

44
46
47



TABLE OF FIGURES

Figure 1 EOS System Functional BIOCK Diagram..........ccccovevieiiiiiiiie e see e see e 4
Figure 2 EOS Software Architecture / HIErarchy...........ccooviviii i 6
Figure 3 Energy Optimizer Functional BIOCK Diagram ...........ccccoceiiiiiiiciiniiiinescseseseseeeeeas 8
Figure 4 Optimizer Input OQULPUL DIAGIAM ......ccveiiiiiiiiece e 10
Figure 5 Variable FOrgetting FaCOr ..........ccviveiiii i 23
Figure 6 Flowchart of Direct Load Control for Smart Appliance Coordination.............ccccceevnee. 28
Figure 7 Lab Test Setup and Functional BIOCK Diagram ..........c.cccceeerereieiiienineneseseseeeeeee 36
Figure 8 User Control Options oOf TeSt SCENAIOS .......cccueiiuriieeiie e 38
Figure 9 Programmable Communicating Thermostat (PCT) DLC Command...........c..cccccvevernnee. 40
Figure 10 PCT DLC Display on ECODaShBOArd............ccooiiriiieiiiieie e e 40
Figure 11 PCT DLC Commands Executed in T-Stat.........ccccccveiverieeiireiiie e eseese e see e 41
Figure 12 CPP Policy Generated in POIICYNEL..........cccooiiiiiiiicc e 41
Figure 13 CPP Policy Deployed from the POHCYNET .........c.ccvviiiiiiiiieiee e 42
Figure 14 Peak Power Reduction in ReSPONSe t0 CPP..........cccoiiiiiieierieee e 42
Figure 15 Peak Power Reduction ReSUItS fOr DIYEr ........ccccccviieviiiicie e 43
Figure 16 Energy Optimizer Turned Off and ON .........ccooveiiiiiiiieie e 43
Figure 17 Energy Optimizer Setting the T-Stat SEtpoint .........cccccoveeieie v 44
Figure 18 Banded Thermostat Temperature SEtPOINt .........cccveveevieviee i 45
Figure 19 Potential Energy Savings by the Energy Optimization.............cccccovvvevieviviiievesecie s 46
TABLES
Table 1 OptimiIZer CONSIIAINTS ........ocviiiiieieiisi ittt 9
Table 2 User INputs from UL/ HMI ..o 11
Table 3 Predicted or ACQUITEd INPULS.......coiiiiiiiic e 11
Table 4 Measured and Observed Inputs at Present Time Instant ...........ccccoveveviiieieiiese s 12
Table 5 OPtIMIZEr OULPULS ........eiviietiieeeiee ettt 12
Table 6 Critical Specifications of the OpPtIMIZEr.........cccccve e 13
Table 7 Outputs Of the SYSIEM ID ........c.oiiiiicece e e nre s 15
Table 8 Critical Specifications of the SYStem ID .........cccooeiiiiiiiie e 15
Table 9 INputs Of the SYSIEM ID ........oiiie et nee s 15
Table 10 Outputs to Appliances from EOS ... s 19
Table 11 Benefits Of SYSTEM ID ......cc.oiiiiiiiiiiie e 21
Table 12 Simulation RESUILS SUMMAIY .........oiiiiiiiiieie et nee s 23
Table 13 Data Fields for Load Feedback ANalyLiCS.........ccccvveiiiiiii i 25
Table 14 Data Fields for DG Feedback ANAIVLICS..........cccvciviiiiieieiicie e 26
Table 15 Appliance Direct Load Control Command Field 1 ..........cocoiiiiiiiiiniiiienecceee 30
Table 16 Appliance Direct Load Control Command Field 2 ..o 31
Table 17 CPP data structure and fOrmat...........cocooiviiiiiiiiinese e e 32
Table 18 Data Fields for Alert MESSAQES ........ccviiririeieieieise ettt 34
Table 19 Summary of Test Scenarios and RESUILS .........cccviiiiiiieie e 35

Table 20 Available / Possible User Controls CombinNations ..........veevvveiiiieiiirieiee e eseeieeeeee e s 38



1. Executive Summary

The scope of this project [1] is to develop and demonstrate in a laboratory environment a specific
portfolio of technologies that enhance the functions and features of the Energy Optimization
System (EOS) developed at GE Global Research. This is in support of Hawai‘i Natural Energy
Institute’s (HNEI’s) contribution to the Hawai‘i Clean Energy Initiative (HCEI) to improve
overall end-use energy efficiency by improving building system and appliance operating
efficiencies, as well as by reducing peak demand through usage monitoring and demand response
equipment installed in residential and commercial structures. GE’s EOS program is focused at
the residential level on the following three areas: 1. Defining system requirements and
specifications; 2. Developing advanced / enhanced functions and features of the energy
management / optimization system; and 3. Performing laboratory validation tests and analysis.

The first focus area is on development of functional requirements and conceptual designs for the
different component technologies that comprise the EOS. Three EOS conceptual system
architectures (distributed, centralized, and hybrid) have been developed, compared and evaluated
with emphasis on the distributed architecture for laboratory validation. Functional requirements
and specifications for all key EOS component technologies / modules have been defined. These
key components are self-learning and adaptive home models through system identification,
utility feedback analytics, and direct load control and smart appliances coordination. Highlights
of requirement specifications are summarized in this report. Details of the requirement
specifications are documented in a separate specification document [2], referenced by this report.

The second focus area is development of enhanced functions / features of the EOS. Specifically,
advanced functions / features include self-learning and adaptive home models, utility feedback
analytics, and direct load control and smart appliances coordination. A home thermal model was
developed to allow the EOS to predict how the home will react to stimuli such as weather,
HVAC operation, homeowner occupancies. The model was constructed and updated using a
system identification technique to enable self-calibrating and updating the model automatically
for new and retrofit homes. The model can also be used to track changes to the home structure
over time as a tool for monitoring / diagnostics. Utility feedback analytics were also designed to
provide the utility with valuable information such as sheddable load and available DG generation
(solar PV and wind, etc.). Direct load control and smart appliances coordination algorithms were
developed and validated in GE Global Research’s Smart Grid Laboratory.

The third focus area is on the laboratory testing, validation and analysis. Three most applicable
test scenarios were tested in the Lab with a stressed power grid condition simulated with high
electricity price. The three test scenarios are: direct load control (DLC) for emergency load
shedding; peak power reduction in response to critical peak pricing (CPP) signal; and energy
optimization for energy reduction and utility bill savings. Test results met expectations. All
three scenarios can be applied with pre-defined priorities per utility and consumer’s needs and
preferences. They are complimentary energy management techniques / algorithms that can be
implemented / deployed individually or in any combination of the three.

This report is organized as follows. Section 1 will provide an overview of the background and
accomplishments of the program. Section 2 will summarize the status of the project with regards
to the deliverables and milestones. Section 3 will detail technical results of all the six tasks and
deliverables.  Section 4 provides reference material and archival locations of detailed
documentation developed throughout the course of executing the program.



2. Background

An objective of the Hawaii Natural Energy Institute’s (HNEI) contribution to the Hawaii Clean
Energy Initiative (HCEI) is to improve overall end-use energy efficiency by improving building
system and appliance operating efficiencies, as well as by reducing peak demand through usage
monitoring and demand response equipment installed in residential and commercial structures.
Toward this goal, HNEI is examining new technology development for home energy
management systems, which can coordinate demand side management, peak demand response,
and end use energy efficiency.

Through expanded collaboration with GE Global Research, development was undertaken to
develop control algorithms necessary to efficiently manage energy utilization in the home. This
effort is instrumental in supporting present and future projects for home and community energy
management such as the on-going Maui Smart Grid Demonstration project.

Smart home energy management technologies have been developed that have the capabilities to:
a. Balance on-site home energy generation, energy storage with load energy usage;

b. Coordinate operation of energy generation, energy storage and load usage to minimize
utility energy cost while adhering to homeowner preferences;

c. Receive and utilize utility electricity rate tariff (direct and market-based) along with
forecast weather and environmental information to perform the energy and cost
optimization function;

d. Interface with advanced meters to provide trending and reporting; and

e. Interface with smart appliances and coordinate their operations in various energy savings
scenarios.

The energy optimization system (EOS) consists of an energy management platform, which
interfaces to smart meters, smart loads within the home as well as smart energy generation and
energy storage components. The homeowner interfaces with the EOS system through a user
interface display. The central element of the EOS system is an energy-optimizing engine, which
is based on model-based predictive controls. The energy optimizing engine utilizes forecast
weather, solar insolation and utility electricity tariff, coupled with sensors within the home, along
with a thermal and energy model of the home to plan the optimal usage of the thermostat, control
the storage level of energy storage and manage the operation of the smart appliances. The key
value to the homeowner is the real-time estimate of energy uses and monthly savings, as
homeowners make adjustments to their preferences on the user interface display. The key value
to utility is the validation and quantification of actions from demand response events and the
estimation of home actions in the event of utility demand response request.

The energy-optimizing engine could be utilized in many different conservation or incentive
programs and scenarios. It can be used for many different functions such as energy home
automation to education and informational to tracking and reporting. The EOS system enables
homeowner and the utility to capture a significant entitlement of smart grid ownership and smart
appliances ownership as it allows the various subsystems to work in unison as a single system.

2.1 Prior Energy Management Technology Development
With regard to home energy automation functions, the EOS system automates the energy



savings, empty house setbacks, pre-cooling of the house for peak load reduction, and peak load
reduction operation of all the major loads including appliances, heating, ventilating and air
conditioning (HVAC), water heating, lighting, and miscellaneous electric loads. The EOS
system receives pricing signals from the utility smart meter, such as time-of-use rate tariff, real-
time pricing tariff or critical peak pricing, and parses it for usage in the optimizer engine. The
EOS system also receives forecast weather and solar insolation from weather servers, which
resides on the web and parses it for usage in the optimizer engine. The EOS system interfaces
with all major loads via a wireless interface, e.g., Zigbee, and is able to command the appliances
to temporarily enter into a reduce power state or shift to later operation where possible.

With regard to education and informational function, the EOS provides real-time estimates on
the user display of energy usage and utility cost. The estimates can be showed for what is saved
at the end of the month or for the next billing cycle (30 days from now). The EOS system
utilizes the energy optimizer engine along with historical trends and forecast weather information
to make this estimate.

With regard to tracking and reporting, the EOS system reports on the user display real-time
usage of electricity. The information is stored and is trended over various time intervals (in days,
weeks, months, and years). A similar tracking and reporting scheme can be easily implemented
for water usage, natural gas usage as well as solar power production, if the inclusion of those
systems were made to the EOS system.

2.2 Project Objectives

Enhanced functions and capabilities to its Energy Optimization System (EOS) were developed
including:

a. Adaptive and self-learning energy optimizing engine

b. Utility feedback functions such as direct load control analytics and critical peak

pricing analytics

c. Negotiator with discrete operation smart appliances - Planning algorithm.
GE will also establish functional description of capability and functionality of the above
enhancements to EOS system.

Six tasks were undertaken to achieve the set objectives. The tasks are: 1. Define system
requirements; 2. Develop self-learning and adaptive algorithms; 3. Develop utility feedback
analytics; 4. Coordinate EOS with smart appliances; 5. Perform laboratory tests and analysis; and
6. Manage project and write progress and final project reports. Accomplishments and detailed
results of all the six tasks are discussed in the following Sections.

3. Technical Results of Tasks and Deliverables
3.1 Requirement Definition

3.1.1 System Communication and Controls Architecture

There are four major functional subsystems or modules for the EOS' system: the energy
management engine (energy optimizer), connectivity to the grid / utility, connectivity to (and
control of) appliances, and the user interface / human machine interface (Ul / HMI). The energy

* EOS and EHEMS are used interchangeably in this document and references.



optimizer is the “brain” of the system. Depending on where the optimizer is physically located,
there are three major configurations for EOS: centralized, distributed and hybrid. All three major
architectures / technologies shall be available to customers with the default or preferred
configuration being the hybrid architecture.

Figure 1 (A) shows a centralized EOS where the optimizer is located outside the home / user
premise on a centralized server. In this configuration, one server or energy optimizer shall
control / manage a number of homes. All the energy optimization / management intelligence
resides in the centralized server. The server can be in the utility monitoring and control center;
can be in a GE supervisory center; or can be in a third party managed service center. The
centralized architecture has potential lower hardware cost, lower service cost, and better
maintainability (e.g., software and hardware upgrade). It can also be better (more seamlessly and
securely) integrated with other energy management systems (at transmission and distribution
levels) within the entire smart grid. Although the optimization algorithms are located outside the
home on a centralized server, the end-users shall still have full access and control to the EOS. In
other words, the user shall be able to log on to his / her individual account on the server and
input preferences, overwrites, or bypasses. The limitation or drawback of the centralized EOS is
elevated Internet / network traffic since the server has to communicate via Internet network with
multiple homes.
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Figure 1 EOS System Functional Block Diagram

Figure 1 (B) shows a distributed architecture of the EOS where the energy optimizer resides in
individual homes. Each home has its own dedicated energy optimizer implemented in a
computer or embedded / specialized controller. The energy optimizer may also reside in smart
thermostat, cable set-top box, “smart” in-home display, or other computing / smart devices with
sufficient computing capability and memory in order to perform optimization and with ability to
display parameters and accept user inputs. In contrast to the centralized EOS, the distributed
architecture has all the energy management functions and intelligence installed on a personal PC



in the home. It communicates and interfaces with all the other key smart home components
(such as smart meter and appliances) right in the home. It, therefore, does not require / demand a
lot of network traffic. The downside of the distributed EOS is that it potentially has higher
overall system (capital) cost, it also puts burdens / relies on the end consumers for upgrade and
maintenance.

The hybrid architecture has the same hardware / communication configuration as the centralized
one as shown in Figure 1 (A). The difference between the centralized and hybrid architectures is
that energy management functions / intelligence all reside in one server for the centralized
configuration; whereas the management function / intelligence is split between the server and the
smart panel in the home for the hybrid architecture. This hybrid approach of distributing energy
management / optimization algorithms / intelligence between server and in-home smart panel /
other in-home control device is more evident in the software architecture in Figure 2 which will
be discussed in the software architecture Section.

In the connectivity to the grid / utility, Wi-Max and Silver Spring Network (SSN) was used to
connect the meter with the utility policy server for illustration only. The architecture shall be
and is flexible to adapt to other types of radio frequency (RF) networks, for example Sensus
Flexnet or Itron AMI network. For SSN network (connection), Zigbee rather than Home Plug
will be the media to connect meter to the rest of the EOS (for example UI/HMI) within the home.

Similarly in the connectivity to the (smart) appliances, Zighee was used for illustration purpose;
other wireless and wireline communications, such as Wi-Fi, Z-wave and Home Plug, can and
shall be adapted to the architecture. Wireless communications are preferred / default protocols
for better mobility. In homes with the intelligent load panel, some of the appliances shall be
linked to the intelligent load panel to simplify the system (hardware / physical wiring).

In the user interface or human machine interface module, the preferred communication protocol
of the Ul / HMI to the rest of the EOS is the Wi-Fi wireless connection. This allows the user to
freely move the Ul within the home premise.

3.1.2 Software Architecture / Hierarchy

Figure 2 shows a software architecture for all the three possible system configurations:
distributed, centralized and hybrid architectures. While the location of the intelligence is
relatively straightforward for the distributed and centralized configurations, the split of the
intelligence for hybrid architecture is application dependent. One example of this hybrid
approach of distributing energy management optimization algorithms and intelligence between
server and in-home smart panel or other in-home control device is that the data pre-processing
(such as data filtering and averaging), diagnostics and prognostics reside within the home; and
all the other computing and memory intensive optimizations reside on the centralized server.
This hybrid architecture can best utilize all the local and global (central) resources effectively to
minimize the network data traffic and maximize the system efficiency and speed.
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Figure 2 EOS Software Architecture / Hierarchy

3.1.3 System Functional Requirements
In this section, we look at requirements from the major functionality and feature perspective. In
other words, we define what major functions and features the EOS shall provide and offer,
respectively.

The EQOS shall perform the following major functions:
e Optimize (minimize) energy consumption and cost (utility bill);
e Provide DR/ DSM to enhance grid efficiency and reliability;
e Communicate in two-way mode securely with the grid and utility;
e Control appliances with secure two-way communication; and
e Provide an informative and user friendly graphical interface.

The EOS shall interface with utility advanced meters enabled with secure two-way
communication, which creates and enables all other capabilities within the system. This
interface may carry various data types including sensitive data, confidential data, and load
control / DSM data. Specifically it shall receive and utilize utility electricity rate tariffs (direct
and market-based) through the meters, along with forecasted weather and environmental
information from the Internet to perform energy management functions. Appropriate levels of
security must be provided for these types of communications. Security is critical. It protects
consumers, utilities and (other) energy service providers’ assets while enabling next-generation
applications and capabilities.



It shall manage and optimize on-site home energy generation, energy storage and load usage to
minimize energy consumption and utility bills, subject to external signals and homeowner
preferences.

It shall interface with smart appliances via two-way secure communication and coordinate their
operations in various energy saving scenarios.

It shall interface with end users to receive customers’ preferences, overwrite commands /
settings; and provides end users with feedback information such as cost of energy, utility bill
trending, and other real-time alert messages.

3.1.3.1 Enerqgy Optimization System (EOS) Requirements

3.1.3.1.1.Enerqgy Optimization System Functional Requirements

The Energy Optimizer (Optimization Engine) shall consist of an energy management platform,
which interfaces to communicating electricity meters, residential energy generation technologies
such as solar PV, on-site energy storage and interruptible smart loads within the home. A
homeowner interacts with the optimizer through a graphical user interface display.

The central element of the energy optimizer is an energy-optimizing engine, which utilizes
historical information, sensed information describing the present system state, and forecasted
information about the future such as Time-of-Use rate information, weather and solar insolation
as inputs, and then seeks to identify optimal settings for controllable energy elements within the
home such as smart appliances, and interruptible thermostats and storage devices.

The optimizer shall be multi-objective in nature, and can satisfy multiple trade-off objectives
such as reducing monthly utility bills and maximizing solar energy utilization, based on user
preferences. The energy optimizer shall be able to provide the end users with a real-time
estimate of the impact of changes in the settings of a device such as a thermostat, on their
monthly utility bill or other optimization objective targets.

The energy optimizer shall provide basic trending and feedback functions that are of value to
residential users. In particular, it shall trend electricity, water and natural gas consumption and
shall report real-time status as well as daily, weekly and monthly consumption statistics. It shall
also trend and report solar energy production and battery storage utilization, if available in the
home / building. The optimizer shall also provide estimates of the monthly utility bills given
current optimization engine settings.

The optimizer shall receive pricing signals through the utility meter (time-of-use rates, real-time
pricing rates, etc.) and parse them for usage in the optimization engine. The system shall also
receive forecasted weather and solar insolation from weather servers, which reside on the web,
and parse these forecasts for usage in the optimizer.

The energy optimizer shall interface with communicating appliances, via wireless or wireline
(e.g., Zigbee or Home Plug) interfaces.

Specifically, the energy optimizer shall be / contain a set of control algorithms and associated
software packages / programs that optimize / minimize the total energy cost of the home / system
subject to constraints and user preferences by performing the following major functions:

1. Providing the optimal thermostat Setpoints for all the thermal zones in the house /
building



2. Providing the optimal water tank temperature setpoint

3. Controlling and Managing the power / energy exchange among grid, solar PV,
batteries, and loads

4. Providing total electricity and minimized fuel costs.

The optimizer shall be customized to an individual home / building, and it shall be capable of
adapting to a variety of homes / buildings and conditions. This includes different homes /
buildings and the various conditions (e.g., aging) of the same home / building. If a home /
building model is used in the optimizer it shall have the system identification capability to adjust
the models to adapt to the new conditions. The optimizer shall be able to communicate both
ways (taking inputs from and displaying outputs to) with the EOS user interface / human
machine interface for user settings and preferences, and for displaying relevant information such
as total electricity and fuel costs.

The optimizer, although capable, is not intended for direct load control purpose / functionality
for modularity reason. The direct load control shall be a separate module that is specified in the
next section.

The energy management system shall leverage historical energy usage statistics compiled
throughout its operation to establish estimates of periodic (e.g., hourly) energy consumption,
ambient temperature, solar insolation and other variables that can be used for planning how to
best operate the controllable elements throughout the day. Where possible, forecasted data shall
also be used to help the control system planning. Forecasted data may include time-of-use
(TOU) electricity rate profiles, including peak-activated rates; solar insolation forecasts; and
ambient temperature and wind forecasts. A block summary diagram of the energy optimizer is
shown in Figure 3.
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+ Seasonal conditions + Reduce energy utilization of home
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Figure 3 Energy Optimizer Functional Block Diagram



3.1.3.1.2. Constraints and Objective Functions

The energy optimizer optimizes (minimizes or maximizes) objective functions subject to
physical, practical and economic constraints. Specifically the EOS energy optimizer is designed
to optimize energy utilization to meet end-user / consumer objectives [8], such as:

e Minimizing energy consumption and cost / bills (electric, gas, oil);
e Reducing wasteful energy utilization in the home; and
« Stabilizing the local community grid through demand-response participation.

Of course, the objectives for each home will be different, as they will be determined by
homeowners through input to a human machine interface — EcoDashBoard panel. Along with
these objectives, homeowners can also specify home operation constraints, such as upper and
lower bounds on zonal temperatures, and deferrable and sheddable load preferences.

Certain classes of equipment will also introduce constraints on the control, such as,

« Battery depth of charge and charge/discharge rates
e Equipment cycling limits.

Table 1 lists typical constraints for the optimization engine. There are two sets of constraints:
hard constraints that must be met; and soft constraints (in italic) that are nice to have. The soft
constraints shall be formulated into the objective function(s) with a weighted penalty factor (or
slack variable). The penalty weighting factors are part of the critical specifications listed in

Table 6; and shall be specified / input by the installer at commissioning of the system.

Table 1 Optimizer Constraints
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3.1.3.1.3. Inputs and Outputs of the Enerqy Optimizer

Inputs and outputs of a system / subsystems are relative and depend on the boundaries of the
system / subsystems of interest. In this document, we look at the inputs and outputs from a
software architecture perspective. Specifically the inputs and outputs shall refer to the ones
defined by the subsystems / modules outlined in Figure 2.

The inputs and outputs of the optimizer are the critical parameters of the module. Figure 4
illustrates the input and output relationships. There shall be three groups of inputs fed into the
optimizer: user inputs (from Ul / HMI dashboard), acquired (e.g., from weather web server), or
predicted inputs and measured (e.g., from sensors) or observed inputs. Tables 2 to 4 list the
details of the inputs in each respective group. Table 5 lists the outputs from the optimizer [8].

Acquired and Predicted Inputs

User ‘ Pre-Processor —Measured /
Inputs (Model Adaptive Turning) O?::L:\tlsed
@ Input data structure
Objective i .
. - timizer _ Constraints
Functions 8
@ Qutput data structure
Post-Processor

L

Optimizer Qutputs

Figure 4 Optimizer Input Output Diagram

In order for the optimizer to function, the critical specifications that define the physical property
of the EOS system (house) have to be specified to the optimizer. Table 6 tabulates all the critical
specifications for the optimizer.

10



Table 2 User Inputs from Ul / HMI

Input Description Units Size Data Type
Preferred Temperature Setpoints F n,x N Float Matrix
Temperature Lower bounds F n, x N Float Matrix
Temperature Upper Bounds F n, x N Float Matrix
Water Tank Temperature Lower Bounds F N Float Vector
Water Tank Temperature Upper Bounds F N Float Vector
Allowable Load Shedding Tierl w N Float Vector
Allowable Load Shedding Tier2 W N Float Vector
Allowable Load Shedding Tier3 W N Float Vector

Table 3 Predicted or Acquired Inputs

Input Description Units Size Data Type
Ambient Temperature F N+1 Float Vector
Internal Heat Gains w n, x (N+1) Float Matrix
Predicted Outflow from Tank Gal/min N Float Vector
Predicted Solar PV w N+1 Float Vector
Load Demand Tierl w N+1 Float Vector
Load Demand Tier2 w N+1 Float Vector
Load Demand Tier3 w N+1 Float Vector
Load Demand Tier4 (critical) w N+1 Float Vector
Buy Price from Grid Cents/kWh N Float Vector
Sell Price to Grid Cents/kWh N Float Vector
Heating Price Cents/kWh N Float Vector
Cooling Price Cents/kWh N Float Vector
Water Heating Price Cents/kWh N Float Vector
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Table 4 Measured and Observed Inputs at Present Time Instant

Input Description Units Size Data Type
Current Temperatures F n, Float Vector
Battery State of Charge W 1 Float
Power Flow from Grid to Batteries w 1 Float
Power Flow from PV to Batteries w 1 Float
Power Flow from Batteries to Loads w 1 Float
Power Flow from PV to Loads w 1 Float
Power Flow from PV to Grid w 1 Float
Power Flow from Grid to Loads w 1 Float
Current Supplied Load, Tierl wW 1 Float
Current Supplied Load, Tier2 W 1 Float
Current Supplied Load, Tier3 w 1 Float
Table 5 Optimizer Outputs
Output Description Units Size Data Type
(Actual) Temperature Setpoints F n, x N Float Matrix
Hot Water Temperature Setpoints F N Float Vector
Power Flow from Grid to Batteries w N Float Vector
Power Flow from PV to Batteries W N Float Vector
Power Flow from Batteries to Loads w N Float Vector
Power Flow from PV to Grid w N Float Vector
Power Flow from PV to Loads w N Float Vector
Power Flow from Grid to Loads w N Float Vector
Grid Generation (Net) w N Float Vector
Total Electricity Cost $ N Float Vector
Total Fuel Cost $ N Float Vector
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Table 6 Critical Specifications of the Optimizer

Critical Specification Description Units Size Data Type
Number of Time Steps (N) 1 Int
Time Step of Calculation (Ts) Min 1 Float
Number of Thermal Zones (n,) 1 Int
Thermal Model Matrix1 n, x N, Float Matrix
Thermal Model Matrix2 n,x1 Float Matrix
Thermal Model Matrix3 N, x N, Float Matrix
Thermal Model Matrix4 n, x N, Float Matrix
Thermal Model Matrix5 n, x N, Float Matrix
DHW Model Matrix1 w 1x1 Float Matrix
DHW Model Matrix2 w 1x1 Float Matrix
DHW Model Matrix3 w 1x1 Float Matrix
DHW Model Matrix4 w 1x1 Float Matrix
Battery Time Constant 1 Float
Max HVAC Consumption, Heating w 1 Float
Max HVAC Consumption, Cooling W 1 Float
Max DHW Power Consumption W 1 Float
Max Battery Charge Power w 1 Float
Max Battery Discharge Power W 1 Float
Max Energy Capacity of Batteries Wh 1 Float
Min Energy Level Batteries Wh 1 Float
Weight on Violation of Temperature Bands 1 Float
Weight on Deviation from Desired Temperature 1 Float
Weight on violation of DHW Temperature Limits 1 Float
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Weight on violation of SOC limits 1 Float
Penalty on Load Shedding, Tierl 1 Float
Penalty on Load Shedding, Tier2 1 Float
Penalty on Load Shedding, Tier3 1 Float

3.1.3.2 Requirements of Self-learning and Adaptive Home Models Integrated into
EOS

3.1.3.2.1. System ldentification Functional Requirements

If the energy optimizer relies on a set of mathematical models that represent the physics of the
house / residence, the system shall have the capability / ability to self-identify, construct, and
update periodically the models by initiating a set of runs that are non-invasive / non-intrusive to
the customers / users. The complete and comprehensive system identification shall be run at EOS
commissioning and at any major house modifications that would significantly impact on the
thermal property of the premise. In addition, the system shall be able to adapt to seasonal climate
changes with fine tuning of the models by self initiating a subset of the system identifications
runs. The system ID algorithms shall have the intelligence to detect abnormal conditions (such as
open windows and doors) to prevent the system ID from running. Such conditions would,
otherwise, have skewed the system ID and mathematical models.

The interactive relationship of the system ID function with the energy optimizer and other
functional modules of the system is illustrated in Figure 2.

3.1.3.2.2. System ldentification Inputs and Outputs

From the software architecture shown in Figure 2, the EOS energy optimizer uses a set of models
to optimize and control the energy system. The models allow the energy optimizer to predict how
the home reacts to stimuli such as weather, HVAC operation, homeowner occupancy. The
models shall be constructed and updated automatically by the energy management system using
system identification (ID) technique to enable self-calibrating / updating the models with
minimum user interaction for easy and low-cost installation for both new and retrofit homes.
They may also be used to track changes to the home structure over time as a means to do
monitoring and diagnostics.

The system identification for the thermal model used for HAVC system monitors the thermal
inputs to the home and the resulting variation in temperature to estimate a model that captures
the zonal temperature response. Then this estimated thermal model is passed to the optimizer
block to compute optimal setpoints for the rest of the energy management system.

The inputs and outputs of the thermal model system identification are tabulated in
Table 7, Table 8 and Table 9.
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Table 7 Outputs of the System ID

Output Description Units Size Data Type
Thermal Model Matrix1 n, x N, Float Matrix
Thermal Model Matrix2 n,x1 Float Matrix
Thermal Model Matrix3 n, xn, Float Matrix
Thermal Model Matrix4 N, x N, Float Matrix
Thermal Model Matrix5 n, x N, Float Matrix
Table 8 Critical Specifications of the System ID

Critical Specification Description Units Size Data Type
Time Step of Calculation (Tsiq) Min 1 Float
Number of Thermal Zones (n,) 1 Int
Max HVAC Consumption, Heating W 1 Float
Max HVAC Consumption, Cooling w 1 Float
Initial estimate of error covariance (4n,+1)x (4n,+1) | Float Matrix
Initial estimate of thermal model matrices n,x (4n,+1) Float Matrix
Forgetting factor in least square estimator, 0<y<1) 1 Float
Forgetting factor in least square estimator, a=1-y 1 Float

Table 9 Inputs of the System ID
Input Description Units Size Data Type

Ambient Temperature F 1 Float
Internal Heat Gains W n,x1 Float Matrix
Current Temperatures F n, Float Vector
HVAC Heating Load w 1 Float
HVAC Cooling Load w 1 Float
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3.1.3.3 Functional Requirements of Utility Feedback Analytics

The EOS shall be connected securely with two-way communication to the electrical grid / utility
server. This two-way communication shall provide means / physical media for information
exchange between the EOS and the utility. Both AMI wireless RF networks, such as Wi-Max
and Silver Spring Networks (SSN), and wireline broadband connection (if existing) shall be
made available to connect the EOS and the utility server. The broadband connection is especially
critical to the early EOS adoption since it is widely (60%-70%) available now / already in North
American households.

This connectivity shall provide various types of communication to support anticipated market
growth. Three communication type examples include public pricing signaling, consumer specific
signaling, and control signaling. Public pricing is the communication of material, which is
publicly available. Consumer-specific signaling would be signaling that supports a home energy
management system. Control signaling are those signals used to support load shedding.

Each signal type warrants individual security and privacy analysis and treatment. In particular,
consumer-specific information signaling shall have additional privacy measures and methods.

The EOS shall provide back to the smart meter and then to utility server the following feedback
analytics information upon a query request initiated from the meter / server:

Shedable electrical loads and status / mode
Distributed (e.g., solar PV) power / energy generation
Local energy storage

Plug-in Hybrid Electric Vehicle (PHEV) ID

PHEV electrical energy consumption / generation
User preferences / acceptance on direct load control.

This function establishes the load state of the home and estimates the sheddable elements, which
are prioritized, based on electricity price and the load shedding signaling severity. The load state
and sheddable load profile can be communicated to the utility’s demand response (DR) back-
office application to reduce uncertainty of sheddable load and improve DR system effectiveness
and reliability.

3.1.3.4 Requirements of Planning Algorithms for Smart Appliance Coordination

3.1.3.4.1. Smart Appliance Coordination Functional Requirements

The smart appliances in a home or premise are controlled and coordinated in two groups /
modules. As discussed in Section 0, the EOS controls and coordinates the thermostat / HAVC,
water heater, and Solar PV and battery storage. All the other smart appliances are controlled and
coordinated via the direct load control module as discussed in detail in Section 0.

The direct load control functionality enhances the EOS by complimenting the energy optimizer.
It shall include direct load control analytics, the utility feedback analytics, load scheduling, usage
planning and negotiation. It provides a channel for the utility’s DSM to control (e.g., turn off) the
loads that are not managed by the optimizer. The directly controlled loads, including the priority
/ order in which the loads are turned off, shall be specified and agreed by the users. The user
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shall also have the ability / option through the user interface to allow or disallow / overwrite the
direct load control functionality.

Direct load control analytics integrate the utility’s direct load control signaling into the EOS and
gives the utility control of home loads in the event of a utility direct load control signal.

The direct load control module shall negotiate and plan usage for discrete-operation smart
appliances. This function plans and coordinates the operation between smart appliances based
on the appliance’s constraints, user preferences and priority, and cost of operation.

The interface between the EOS and the smart appliances defines controls, measurement and
monitoring applications. The control commands flow from the EOS to smart appliances while
the measurement and monitoring information is fed back from the appliances and measurement
devices to the EOS.

Most of the functions and information flow defined and described below apply to smart
appliances. For existing traditional appliances, the control application will be predominately
discrete on and off controls with a smart outlet plug.

3.1.3.5 EOS to Smart Appliances

Control applications respond to control signaling / command from the EcoDashBoard and / or
the EOS. There are typically two types of commands:

1. Set a control reference target / setpoint for an appliance or equipment, such as the T-
stat Setpoint for HAVC and temperature Setpoint for DHW. They are part of the
outputs from the energy optimizer

2. Command a device or appliance to turn on, off, or cycle at configurable time
intervals or thresholds, or enter into an energy saving (Eco) mode. These are outputs
from the direct load control module.

Specifically, the following functions / information exchange are required for this application
interface [9]:

1) Appliance and device shall accept control signals from EcoDashBoard and EOS

2) Appliance and device shall respond to requests to cease operational state (e.g., open
contact, turn off device)

3) Appliance and device shall respond to requests to resume operational state (e.g.,
close contact, turn on device)

4) Appliance and device shall respond to requests to cease operational state (e.g., open
contact, turn off device) at a specific time

5) Appliance and device shall respond to requests to resume operational state (e.g.,
close contact, turn on device) at a specific time

6) Appliance and device shall delay restoration of operational state based on a pre-
configured time (e.g., random number)

7) Appliance and device shall respond to request to cycle operational state (i.e., duty
cycle)
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8)

9)

Appliance and device shall respond to request to limit operational mode based on
thresholds, setpoints, and / or triggers (e.g., price points)

Appliance and device shall respond to requests for variable output (e.g., load
limiting, energy saving mode).

3.1.3.6 Smart Appliances to EOS

Measurement and monitoring applications provide internal data and states / status, that include
DG (e.g., solar, wind, and fuel cell), metering of devices within the premise (e.g., consumer
PHEV), monitoring of local conditions (e.g., temperature, humidity, time, airflow, ambient light
level, motion), and monitoring of a device state. These applications provide inputs to the EOS
and enable processing, optimization, and action based upon the inputs.

Detailed and specific functions / information flow from appliances and devices to EcoDashBoard
are listed below [9]:

1)
2)
3)
4)

5)
6)

7)
8)

9)

Appliance and device shall acknowledge receipt of control signal
Appliance and device shall acknowledge execution of control signal
Appliance and device shall notify execution failure of control signal

Appliance and device shall signal any consumer-initiated overrides from the
appliance

Appliance and device shall measure and report instantaneous power demand

Appliance and device shall measure and report total accumulated energy
consumption

Appliance and device shall measure and report total accumulated energy production
| DG

Appliance and device shall measure and report periodic accumulated energy
consumption for a configured time interval (e.g., Wh, BTU, HCF)

Appliance and device shall measure and report accumulated energy production / DG
for a configured time interval

10) Appliance and device shall store interval measurement (e.g., 30 days of interval

reads)

11) Appliance and device shall allow interval configuration (e.g., 15 minutes)

12) Appliance and device shall monitor and report energy state (e.g., state of charge)

13) Appliance and device shall measure and report available capacity (e.g., W, Volt-

Amps)

14) Appliance and device shall monitor and report device state (e.g., operational, stand-

by, maintenance)

15) Appliance and device (e.g., inverter) shall monitor and report the operational mode

(e.g., charging, discharging)
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16) Appliance and device shall measure and report power quality (e.g., frequency,
neutral voltage, harmonic content)

17) Appliance and device shall monitor and report environmental state (e.g.,
temperature, motion, wind).

3.1.3.6.1. Direct Load Control Module Inputs and Outputs

Table 10 Outputs to Appliances from EOS

Output / Appliance | Mode / Range Signal Type | (Parent) Module
Eco Digital (D) Direct Load Control (DLC)
Refrigerator
Normal Digital (D) DLC
Dimmable (0-100%) Analog (A) DLC
Lighting
On/ Off D DLC
T Setpoint A Optimizer
Thermostat
On / Off D DLC
T Setpoint A Optimizer
Hot Water Heater
On / Off or Eco/Normal | D DLC
Washer On / Off or Eco/Normal | D DLC
Dish Washer On / Off or Eco/Normal | D DLC
Dryer On/ Off or Eco/Normal | D DLC
Pool Pump On / Off or Eco/Normal | D DLC
PHEV On / Off or Eco/Normal | D DLC

3.2 Self-learning and Adaptive Algorithms

For Task 2 of the enhanced energy optimization system project, GE’s committed effort was to
develop, implement and test a system identification (ID) algorithm that is complementary to the
energy optimizer by periodically identifying and adjusting the home models to adapt to the
changing conditions (such as seasonal change and house aging).

The system ID algorithms have been developed, implemented and tested for convergence and
robustness. The detailed results are described in the following sections.
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3.2.1 Background

System identification is the process of building a mathematical model of a dynamic system based
on measured data from the system that is being identified.

In the context of the home energy management system, system ID is used within the optimizer to
estimate the thermal model of the home. The following discrete-time, first order home thermal
model is being used:

T(k+1) = AT (k) + BT, (k) + B,Q, (k) + B, u, (k) — B, u, (k)
Where
1. k isthe index of a given time step

T € R™ is the vector of temperatures in each zone (n, : number of zones)

T, is the ambient temperature

Q, € R™ is the vector of heat gains (internal, from people or equipment)

u, (k) e R™ is the HVAC heating load, and u_ (k) € R™ is the HVAC cooling load
AeR™™ B eR™,B, e R"™ B, e R"™ B, € R"™™ are matrices of parameters that
need to be identified.

IS L A

The system ID monitors the thermal inputs to the home and the resulting variation in the zonal
temperatures.  The inputs to the system ID model are the measured room temperature (T),
measured ambient temperature (T,), prescribed internal heat gain (Q:), measured heating load
(up), and measured cooling load (uc). Using this input data the system ID updates the estimated
thermal model of the home, the A, B, B2, Ban, and B, matrices, using the least squares error
method. In order for the optimizer to work effectively, the response of the system ID model
must closely predict the thermal response of the house. To achieve this goal, a recursive system
ID algorithm has been used; the thermal model is updated online as the input data is received,
thereby allowing it to follow changes in the thermal response of the home caused by seasonal
changes, structural changes, open windows, etc.

The optimizer uses the thermal model to calculate the optimum temperature set point for all
zones in the house so as to minimize the cost of heating or cooling required for maintaining the
temperatures within a user defined comfort zone.

3.2.2  System ldentification Algorithm
The following system ID algorithm has been implemented in the optimizer:
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0=[TT,Q u,u.J
y = forgettingfactor
a=1-y

3.2.3. Results

Recent work on the system ID portion of the optimizer focused on three areas:
e Assess the benefit of system ID
e Improve system ID performance
e  Test system ID robustness.

3.2.3.1. Assess the benefit of system 1D

To assess the benefit of system ID, we simulated the optimizer with five different amounts of
mismatch between the actual home model and the estimate. System ID was not used for these
simulations so the initial model estimates were not updated. Each simulation was run for a time
segment from July 1 to July 10 using California as the geographic area. Results are shown in
Table 11.

Table 11 Benefits of System ID

Simulation Description Results
Cost of Electrical Energy
Case # a?nli:nqgtiﬁz Electricity and Consumed Te\rr)i% IaBt?g:ds
Gas($) (kWh)
1 0 47.37 321.0 No
2 +10% 45.35 317.2 Yes
3 -10% 52.31 338.0 No
4 +20% 45.40 319.1 Yes
5 -20% 67.88 430.2 Yes

The above was compared to a simulation run using system ID for the same time segment and
geographic location. The following initial estimate was used:
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The actual model parameters determined from the Doe-2 simulation are:

_[0.78 0.006 [0.214 _[0.0016 0.0001
10.07 065 171 0.28 2 10.0001 0.0016

3c

3h —

{0.00117 0.0002}

0.004172 0.0005
0.0002 0.0013

0.0005 0.00637

The results obtained from this simulation are:
e Cost of electricity and gas: $47.37
e Electrical energy consumed: 321.0 kWh
e No temperature violations after initial transient.

The above results show that running the optimizer without system ID can result in temperature
violations and/or increased cost depending on the degree of model mismatch as the data shaded
yellow in Table 11. It is clear that system ID must be a part of the optimizer to make an accurate
estimate of the home thermal model, so as to stay within the temperature bounds and minimize
cost. Additionally, the system ID algorithm must be recursive so as to track the changes in the
thermal model which occur when there are seasonal, structural and home occupant induced
changes.

3.2.3.2. Improve system ID performance

The performance of the system ID algorithm is characterized by (1) the time it takes the
algorithm to converge to the actual model and (2) the sensitivity of the algorithm to measurement
noise. Both of these characteristics are strongly impacted by the choice of forgetting factor.

The forgetting factor in the recursive least squares algorithm acts as a knob that the designer can
use to adjust the performance of the algorithm. The forgetting factor must be between 0 and 1.
A small forgetting factor results in an algorithm that quickly forgets the previous parameters.
This is good for fast tracking of the model parameters, but causes the algorithm to be highly
sensitive to noise. A large forgetting factor results in an algorithm that remembers the pervious
parameter values, resulting in slow tracking of the parameters, but has the advantage of being
less sensitive to noise.

We started the system ID performance analysis by running the optimizer without measurement
noise on the inputs. Initially, the system ID was run with a forgetting factor of 0.98. This
resulted in a slow rate of convergence. To improve the rate of convergence, forgetting factors of
0.5 and 0.05 were evaluated. Additionally, considering that a low forgetting factor is sensitive to
noise, we also evaluated a variable forgetting factor that changes in value over time, as shown in
the following figure.
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Figure 5 Variable Forgetting Factor

The profile for the variable forgetting factor was chosen so that at the beginning of the
simulation, when the estimate of the model is starting at some initial values far from the actual
values, the forgetting factor is small so the algorithm can quickly track the model parameters. As
time passes, the forgetting factor increases towards unity, making the algorithm less sensitive to
noise.

The time segment for each simulation was from July 1 to July 10, using California as the
geographic location, and the results are summarized in Table 12.

Table 12 Simulation Results Summary

. . Electrical Ener
Forgetting Factor C Time to Error in Model Total Cost ($) Consumed Y
onverge (hrs) Estimates (%) (KWh)
0.98 229 (9.5 days) 0.0034 47.37 321.0
0.5 6 2.2e-12 47.37 321.0
0.05 6 1.6e-9 47 .47 321.2
Variable 21 4.4e-5 47.37 321.0

The time to converge is defined as the time it takes for the slowest parameter to converge within
+ 1% of the actual value for at least 2.5 hours.

The results, as expected, show that a forgetting factor of 0.98 converges the slowest, while the
other forgetting factors converge faster with similar rates. Additionally, the temperature profiles
obtained for all forgetting factors were similar. The temperature stays within bounds after an
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initial transient, which is caused by a mismatch between the estimated and actual model
parameters, as shown in reference [10] for temperature zone 1. Zone 2 temperature profiles are
similar and are therefore not shown.

We then introduced Gaussian white noise onto each input measurement and simulated with the
four forgetting factors again. In the presence of noise, low values of the forgetting factor (0.05
and 0.5) cause significant model mismatch which results in very large temperature violations, as
shown in reference [10] for zone 1 temperature profiles. Zone 2 temperature profiles are similar
and are therefore not shown. The low forgetting factors (0.05 and 0.5) were not used for the rest
of the analysis.

Based on the above results, the 0.98 forgetting factor and the variable forgetting factor are the
only appropriate choices in the presence of noise. The variable forgetting factor yields improved
performance because of faster convergence.

3.2.3.3. Test system ID robustness

In order to thoroughly check that the system ID portion of the optimizer will be robust to
different noise levels, different initial conditions, and different model parameters, we performed
an exhaustive system ID robustness evaluation. The following summarizes the evaluation effort:

e Simulations were run for 144 different home models. These models were generated by
sweeping the critical model parameters around the original model parameters that were
generated by the Doe-2 simulation tool

e Each simulation described above was started with five different sets of initial model
estimates

e The above results in a total of 720 simulation runs. These 720 simulation runs were
performed for 2 different scenarios, summer with a low noise level (variance of 0.01 on
temperature measurements) and winter with a large noise level. (variance of 0.1 on
temperature measurements).

The system ID algorithm turned out to be highly robust. For both scenarios, all 720 simulations
converged (the convergence criteria is based on the amount of noise applied to the
measurements). The average time to converge for each scenario is less than a day. Histograms
for convergence times of these scenarios are shown in References [6][10].

These two scenarios were run with no noise on the room temperature and the results were very
good. For further improvement, we are in the process of running simulations with noise applied
to the room temperature measurements. Additionally, we may implement noise filtering to
reduce the amount of measurement noise and improve the system ID performance. Example
plots for the system ID algorithms results are given in References [6][10].

3.3. Feedback Analytics

For task 3, GE committed to develop the feedback analytics that quantify and verify the
aggregated home response, including pre-cooling the house, responding to a load shedding and
pricing signal from the utility.

GE’s team has defined and developed the feedback analytics that will provide feedback
information from the EcoDashBoard to the smart meter and then to the utility server. The details
of the analytics are described in the following section and are summarized in Tables 13 and 14.
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The smart meter and the EcoDashBoard interface shall be a secure two-way communication thru
a wireline or wireless connection. Wireless (e.g., Zigbee or Wi-Fi) connection is the preferred /
default offering / option since it allows the EcoDashBoard to be moved freely within the home.
This interface shall serve as the key “information channel” for exchanging critical information
between the smart meter and the EOS. For security reasons, the information shall flow primarily
from the meter to the EOS dashboard. A minimum set of absolutely must-have feedback analytic
information shall be transferred from the EOS dashboard to the meter and then to the utility
server.

To manage / limit the data transfer rate, the data exchange / flow shall be initiated by queries on
the receiving end. In other words, the receiver shall initiate a query in order to get information
from the sender. As results, the sender will respond to the request by returning relevant text
strings containing the requested data. The general format of the query request shall be [11]:

http://HOST _ID/query/QUERY _TYPE

where HOST _ID is either an IP address (xxx.xxx.xxx.xxx), a URL (host.ge.com) or, “localhost”
if the home area network (HAN) service and the EcoDashBoard are on the same physical media /
device. QUERY_TYPE is specific to each data type as discussed in the following sections.

The EOS dashboard shall provide back to the smart meter and then to the utility server the
following feedback analytics information upon a query request initiated from the meter / server:

Shedable electrical loads and status / mode

Distributed power / energy generation (solar PV) generation
Local energy storage

Plug-in Hybrid Electric Vehicle (PHEV) ID

PHEV electrical energy consumption / generation

User preferences / acceptance on direct load control.

The query commend shall have the format:
http://HOST _ID/query/FBLoad

The response of the query shall be a text string filled with fields of characters and values as
follows:

[{“title”:”load name”,“date”:”yyyymmdd”,”time”:”hhmm”,*“type”:”sheddable load”,*id”:ip
address”,"status”: status value,”sheddableload”; sheddable power,”msg”:”Sheddable
Load”,”advertUrl”:"”}]

Table 13 Data Fields for Load Feedback Analytics

load name status value sheddable power
T-stat 1/0 pppp/ 0
Domestic Hot water 1/0 pppp /0
Pool Pump 1/0 pppp /0
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PHEV 1/0 pppp /0
Dishwasher 1/0 pppp /0
Dryer 1/0 pppp /0
Washer 1/0 pppp /0

where the status value “1” means the load is on and “0” indicates off.
One specific example of dishwasher is:

[{“title”:”dishwasher”,“date”:”20090101”,”time":”0000,“type”:"sheddable
load”,“id”:192.35.34.16”,“status”: 1,”sheddableload”; 800,”’msg”:”Sheddable
Load”,”advertUrl”:”"}]

For distributed generations (DG) such as solar PV, electrical energy storage module (EESM),
and PHEYV, the feedback analytics shall /can be queried as

http://HOST _ID/query/FBDG
The response of the query shall be defined as:

[{“title”:”load name”,“date”:”yyyymmdd”,”time”:”hhmm” “type”:”DG FB analytics”,“id”:”ip
address”,"“status”: status value,”capacity”; capacity value,”msg”:”DG status”,”advertUrl”:””}]

Table 14 Data Fields for DG Feedback Analytics

load Name status value capacity value
Solar PV 1/0 aaaa/0

EESM 1/0 bb%

PHEV 1/0 cc%

Where the status value “1” means generating / discharging and “0” represents consuming /
charging; aaaa is solar PV power generated; bb% and cc% are the remaining capacity in
percentage (state of charge for batteries).

One specific example for solar PV is:

[{“title”:”Solar PV”,“date”:”"20100101","time”:”0102" ,“type”:"DG FB
analytics”,“id”:7192.35.34.16”,“status”: 1,”capacity”’; 5000,”msg”:”DG status”,”advertUrl”:””}]

While the feedback analytics were developed, we were not able to validate the algorithm in the
Lab. This was because that the PolicyNet server was provided by a third party vendor, GridNet.
Accessing the proprietary software was beyond the scope and budget of this project.
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3.4 Smart Appliance Coordination
3.4.1 Direct Load Control and Smart Appliance Coordination Algorithms

The smart appliances are coordinated and controlled by the direct load control module and the
utility feedback analytics. Task 4 addresses the direct load control from the EOS DLC module to
the appliances, while Task 3 — Utility Feedback Analytics, discussed and reported in Section 0,
provides feedback information from the appliances to the DLC module in the EOS.

Specifically, the direct load control (DLC) module in the EOS controls and manages the
following major home appliances in the pre-defined default order of priority:

T-stat - HVAC

Domestic water heater (DWH)

Pool Pump

Washer

Dryer

Dishwasher

Large LCD / Plasma TV

Plug loads (computers, computer peripherals / accessories, fax machine, power
supplies)

9. Refrigerator (smart or traditional)

10. Lighting (dimmable or on/off non-dimmable traditional).

NG~ WNE

These are mostly discrete types of appliances that have on/off, eco-mode/normal mode, or
multiple discrete power saving modes (e.g., dimmable lighting). The current typical major
energy intensive appliances (excluding PHEV in the future) are HVAC and water heater that are
controlled and managed by the EOS. The rest of the appliances listed above are ranked in the
order of descending energy consumption from the top to the bottom. This is also the default
priority ranking for the DLC module when a load shedding command is received from the utility
and the DLC function is enabled by the consumer. The default priority list also takes into
account the nature of the appliances, the comfort of the consumers, and criticality of the
appliances (e.g., the refrigerator cannot be simply turned off due to potential food / health
hazards). Of course, the priority ranking can be overwritten by the consumers / system owners
per their specific preferences and choices.

The DLC initiated from the utility is most commonly used for peak load reduction, especially for
emergency load shedding. It provides an effective and economic tool for the utility to manage its
load / power demand with optimally dispatched or minimized generation resources / spinning
reserves. It also enhances reliability of the electric power system to avoid power outages and thus
improve customer satisfaction. In addition to the benefits utilities enjoy from DLC, end use
customers also benefit from the savings DLC generates. DLC is also relatively simpler to
implement and adopt compared with other energy management / optimization algorithms. It was
therefore designed in the EOS as a high priority algorithm to execute. The algorithms that
coordinate the direct load control for smart appliances are illustrated in Figure 6.

The following Sections discuss the functional capabilities of DLC algorithm and the smart
appliance coordination.
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Figure 6 Flowchart of Direct Load Control for Smart Appliance Coordination
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3.4.2 Smart AMI Meter and EOS Communication Interface Implementation

One of the key technology enablers of DLC and smart appliance coordination is the HAN
communication. In order to pass DLC commands from the utility server, a communication
channel / means is required from the utility server via the AMI meter to the EOS and then to the
appliances. This section discusses the communication interface that links the AMI meter and the
EOS appliances.

The smart meter and the EcoDashBoard interface shall be a secure two-way communication
through a wireline or wireless connection. Wireless (Wi-Fi) connection is the preferred / default
offering / option since it allows the EcoDashBoard to be moved freely within the home. This
interface shall serve as the key “information channel” for exchanging critical information
between the smart meter and the EOS. For security reasons, the information shall flow primarily
from the meter to the EOS dashboard. A minimum set of absolutely must-have feedback analytic
information shall be transferred from the EOS dashboard to the meter and then to the utility
server.

To manage / limit the data transferred rate, the data exchange / flow shall be initiated by queries
on the receiving end. In other words, the receiver shall initiate a query in order to get information
from the sender. As results, the sender will respond to the request by returning relevant text
strings containing the requested data. The general format of the query request shall be:

http://HOST _ID/query/QUERY_TYPE

where HOST _ID is either an IP address (xxx.xxx.xxx.xxx), a URL (host.ge.com) or, “localhost”
if the HAN Service and the EcoDashBoard are on the same physical media / device.
QUERY_TYPE is specific to each data type as discussed in the following sections.

The smart meter shall provide the following information to the EOS dashboard upon a query
request from the EOS:

e Direct load control request / command, including programmable communicating
thermostat (PCT)

Critical peak pricing (CPP)

Total electrical energy consummation

Consumer alert message

Meter ID (e.g., IP address), sub-metering for solar PV and PHEV

Utility billing and payment (this can come from the “dashboard and Ethernet
interface” as an alternative)

Power outrage / grid status

Rebate and other incentives — e.g., peak time rebate (PTR)

Real-time pricing (RTP)

Time of use (TOU).

Detailed formats of the above exchanged parameters are defined in the following subsections.
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3.4.2.1. Direct load control (DLC) request / command, including programmable

communicating thermostat (PCT)

The DLC command shall be issued via the following query:

http://HOST _ID/query/DLC

Unlike the other queries where the response returns a vector filled with values, the direct load

control command from the utility / smart meter to the EOS dashboard shall have a format of

fields defined as [11]:

[{“title:"title content”,“date”:”yyyymmdd”,”time”:’hhmm?”,“type”:”

type content”,“id”:’ip

address”,“action”: true or false answer,”variable name”; variable value,”msg”:”msg

content”,”advertUrl”:”""}]

where yyyymmadd is the year month and date; and hhmm is the hour and minutes when the direct

load control command is issued. The “title”, “type”, and “id” are defined in Table 15. The

“action”, “variable name”, and “variable value” are specified for respective major house load /

appliance in Table 16. The msg content is “Mandated Direct Load Control.” The *“id” shall be an

IP address that links to the appliance / load

Table 15 Appliance Direct Load Control Command Field 1

Appliance title content type content Id value

T-stat T-stat temperature changed | PCTChange T-stat id/IP
Domestic Hot Domestic Hot water DHWOFF/ON Water tank id/IP
water OFF/ON

Pool Pump Pool Pump OFF/ON PoolPumpOFF/ON | Pool Pump id/IP
PHEV PHEV charging OFF/ON PHEVOFF/ON PHEV outlet id/IP
Dishwasher Dishwasher OFF/ON DishwasherOFF/ON | Dishwasher id/IP
Dryer Dryer OFF/ON DryerOFF/ON Dryer id/IP
Washer Washer OFF/ON WasherOFF/ON Washer id/IP

Refrigerator Refrigerator to EcoMode

RefrigeratorEco

Refrigerator id/IP

Lighting Dim lighting

DimLighting

Lighting id/IP

Plug loads Plug Loads

PlugloadOFF/ON

Plug load outlet id/IP

30



Table 16 Appliance Direct Load Control Command Field 2

Appliance action variable name variable value
T-stat fixedSetback degreeSetback 0-20
Domestic Hot water | DHW OFF/ON DHWDLC 0/1
Pool Pump Pool Pump OFF/ON PoolPumpDLC 0/1
PHEV PHEV charging OFF/ON PHEVDLC 0/1
Dishwasher Dishwasher OFF/ON DishWasherDLC 0/1
Dryer Dryer OFF/ON DryerDLC 0/1
Washer Washer OFF/ON WasherDLC 0/1
Refrigerator Refrigerator EcoMode RefrigecoModeDLC | 0/1
OFF/ON
Lighting Dim lighting DimPercentage 0-100%
Plug loads Plug loads OFF/ON PlugLoadsDLC 0/1

Where the plug loads shall be grouped onto designated smart outlet plug(s) ; or onto the
designated circuit in the intelligence load panel.

Here are four specific examples for PCT, Pool Pump, Refrigerator, and Lighting.
Example 1 - PCT

[{“title”:”T-stat temperature
changed”,“date”:”20081029”,”time”:”1530”,“type”:”"PCTChange”,“id”:”132.618.6.6”,"fixedSet
back”: false,”degreeSetback”; 2,”msg”:”Mandated Direct Load Control.”,”advertUrl”:”"}]

Example 2 — Pool Pump

[{“title”:”"Pool Pump
OFF/ON”,“date”:”20081030”,”time”:”0830”,“type”:”PoolPumpOFF/ON”,“id”:”132.618.6.7”,“P
ool Pump OFF/ON”: true,”PoolPumpDLC”; 0,”msg”:”Mandated Direct Load
Control.”,”advertUrl”:"}]

Example 3 — Refrigerator

[{“title”:”Refrigerator to
EcoMode”,“date”:”20080908”,’time”:” 1430 ,“type”:”RefrigeratorEco”,*“id”:
“192.168.3.121”,“Refrigerator EcoMode OFF/ON”: true,”RefrigEcoModeDLC”;
1,”msg”:”Mandated Direct Load Control.”,”advertUrl”:””}]

Example 4 — Dimmable Lighting

[{“title”:”Dim
lighting”,“date”:”20080816,”time™:”1130”,“type”:”DimLighting”,“id:”192.168.3.122”,“Dim
lighting”: true,”DimPercentage”; 60%,”msg”:”Mandated Direct Load Control.”,”advertUrl”:”"}]
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The priorities for load shedding shall be in the order defined in Tables 15 and 16 based on
consumer power consumption statistics and the impact on quality of life of the consumer.

3.4.2.2. Critical peak pricing (CPP)

The CPP shall be a representative critical peak pricing structure that can be used by the utility to
leverage / influence demand side management. A text string composed of alphabetic and numeric
letters shall be used to communicate the information [11]. For the following illustrative example,
192 price data points are used for total of 48 hours with 15-minute time interval between two
adjacent data points. The first 96 data points are for the previous 24 hours inclusive; and the last
96 data points for the upcoming 24 hours. The general data format is defined as:

{“startDate”:”"mmdd”,”startTime”:”"hhmm?”,”value”:[v1,V2,V3,...... V11,V192]} 1)
The content of the text string is listed in Table 17.

Table 17 CPP data structure and format

Content | Format Range Scaling Interval Default

Header mmdd mm = 01, 02, ..., 12; | 1 N/A mmdd = -1
dd=01,02,...,31

Header hhmm hh = 00, 01, ..., 23; | 1 N/A hhmm = -1

Value Vi vi = 0, 1,.... $0.001 15 minute vi=-1
(i=1,2,...,129) (integer)

It is worthwhile noting that —1 has been used to indicate the current setting.
One specific example is shown below:

{"startDate":-1,"startTime":"0952" "values":[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1 -
1-1,-1,-1-1-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900
,900,900,900,900,900,900,900,900,900,900,400,400,400,400,400,400,400,400,400,400,400,400,
400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,10, 10, 10,10,-1,-1,-1,-1,-
1-1,-1,-1-1-1,-1,-1,-1,-1-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1-1,-1,-1-1-1,-1,-1,-1,-1-1,-1,-1,-1,-1-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
1,-1,-1,-1,-1,-1,-1,-1,-1]}

In this sample, there are three tiers. The first is 8 hours @ $0.90 / kwh. The second is 8 hours
@ $0.40 / kWh and the last is 1 hour @ $0.10 / kWh. For any reporting interval where the
default contract price is in effect, the element of the vector is “-1’. The current time interval
pricing of $0.40 / kWh is indicated in bold.

The CPP information can be obtained by initiating the following query command from the EOS:
http://HOST _ID/query/pricing.
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3.4.2.3. Total electrical energy consumption

The total electricity consumption shall be reported in a similar data format as CPP (formula (1))
with the pricing information replaced by electrical energy consumption in 0.001 kWh for a fixed
time interval. This matched data format will enable rapid / synchronized data processing and
analysis. Since only the past / historical consumption is measured and known, the current and
future reporting periods will always hold “-1’ indicating the unknown and to be determined
consumption. An example energy consumption for 48 hours with 15-minute time interval is
shown below [11]. The current reporting interval is bolded.

{"'startDate™:”0118”,"startTime™:"0438","values":[70,65,65,65,65,65,65,65,65,65,565,1490,1415
,865,745,740,740,740,740,740,745,740,520,425,420,550,770,770,775,575,65,65,410,760,760,76
5,765,755,760,1155,1525,1535,750,65,65,65,65,65,65,60,65,65,65,65,65,65,65,65,65,60,65,65,6
5,65,65,65,65,65,65,65,65,65,65,65,60,65,65,65,65,65,65,65,65,65,65,60,65,65,65,65,65,65,65,6
5-1-1-1-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1-1-1-1-1-1-1-1-1,-1-1-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1-1,-1,-1,-1-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]}

The electricity consumption query shall be initiated by the EOS using the following command:
http://HOST _ID/query/usage

3.4.2.4. Consumer alert messages

Consumer alert messages prompt users with significant event or pricing changes. They shall
provide users useful information that can be used to make decisions on reducing energy
consumption, increasing efficiency or improving system reliability. The alert messages can be
obtain via query command initiated from the EOS dashboard:

http://HOST _ID/query/alerts
The response of the query command shall have the generic format [11]:

[{“alert”:”alert content”,“date”:”yyyymmdd”,”time”:”hhmm?”,“type”:"type
content”,“id”:”’NULL”,“alert”: true,”variable name”; variable value,”start

time”:”mmddhhmm?”,”end time”:”’mmddhhmm”}]
where the variable data fields are defined in Table 18.
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Table 18 Data Fields for Alert Messages

alert content type content variable name variable value
RTP Price RTP RTPPrice aaa

TOU Price TOU TOUPrice bbb

Expected Peak Load Peak Load PeakLoad ccee

Grid Outrage Outrage Outrage 1

Price Rebate Rebate RebatePrice ddd

Monthly Billing Billing Billing SFFFFff
Payment Payment Payment $999999

One specific example of RTP price is:

[{“alert”:”RTP Price Change”,“date:”20081105","time”:”1800”,“type”:”"RTP”,“id”:
“NULL”,“alert”: true,”RTPPrice”; 400,”start time”:701111900 ”,”end time”:
”01182000”}]

where the new electricity price is 40 c/kwWh. Note that unit of 0.001 c/kWh applies to the
electricity pricing and $0.01 applies to the billing and payment values.

3.5. Laboratory Testing and Analysis

For Task 5 of the enhanced energy optimization system project, GE’s committed effort was to
perform a laboratory validation test, and to write a report to describe the performance and
characterization of the overall system operation under stressed grid conditions.

Lab tests have been performed at GE Global Research’s Smart Grid Lab in three different system
scenarios and grid conditions. They are: 1. Bypassing the energy optimizer, and executing direct
load control (DLC) commands for emergency load shedding and peak power reduction; 2.
Utilizing the critical peak pricing signal to manage / reduce peak power consumption and reduce
utility bill / electricity cost; and 3. Running the energy optimizer for minimizing energy
consumption by controlling the thermostat, hot water heater, solar PV, and energy storage. The
grid stressed conditions are simulated in the form of high critical peak pricing signal indicating
that the system is overloaded or close to its designed peak load.

Table 19 summarizes the test scenarios and test results.
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Table 19 Summary of Test Scenarios and Results

Scenario Assumption Setup Results Comments
1. DLC for e DLC 'is_ generated | e PCT DLC command | e T-stat temp e Demo was on PCT
Emergency by utility based on gen_erated by offset / DLC
Load peak power PolicyNet server change_d e Concept applies to
shedding overloading e PCT command accordingly DLC for all
situation deployed to on T-stat per appliances
e PCT DLC is used EcoDashBoard via PCTDLC e Load shedding can be
for tests AMI meter command appliance off or eco-
e Agreement/ e EcoDashBoard sent e Offset T-stat mode / energy saving
contract available the command to T- temp setpoint mode operation
between utility stat will stop / e Other DLC
and consumer e Command executed cycle HVAC commands defined for
o Utility offers fixed by T-stat offsetting PolicyNet and
contractual temperature setpoint implemented in HEM
incentive to stop / cycle e Highest priority
HVAC
2 Peak load/ | ® A\_/a_ilabl_e variable | o CPP generated by e Higher than o Incgntive b_as_ed (via
p.ower pricing signal PolicyNet server threshqld v_arlable pricing
reduction e 48 hr 3-tier CPP e Consumer defines / CPP triggered signal) volyntary
using CPP o Generated by controls threshold dryer to eco- load shedding
utility based on ¢ Higher than mode from e Smart appliances
overloading or threshold CPP normal mode also improved
peak power triggers eco-mode ¢ Reduced energy efficiency
situation operation Power by ~3 | e Pro-active peak load
e Eco-mode operation kKW reduction to avoid
save energy and cost emergency situation
e Second highest
priority
3. Energy ¢ No need for e MPC based Closed o T-stattemp o Lowest priority
Optimization emergency loop control setpoint set e Aimed at improving
mandatory and e Optimize T-stat / accordingly energy efficiency
incentive based HVAC, Hot water by optimizer and utility bill
voluntary peak heater, PV and on the reduction
reduction Energy Storage EcoDashBoar | e Energy reduction
e Target for Energy | e Minimize energy d display rather than peak
reduction and cost e T-stat temp power reduction

e \Weather info was
fed via data file

setpoint was
set by Eco-
Dashboard

The following sections of the report describe and document the details of the laboratory test setup and

results of all the three test conditions.
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3.5.1 Laboratory Test Setup

i Simulated Utility Setup
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Figure 7 Lab Test Setup and Functional Block Diagram

Figure 7 shows a functional block diagram and the actual / physical laboratory setup for the tests
performed at GE Global Research’s Smart Grid Lab.

In this setup, there are two major functional areas / subsystems: utility energy management and
smart home energy management.

Utility EMS was simulated with a GridNet Policy Server, a GE Wi-max AMI meter and a
couple of GE microwave data system (MDS) radios. The GridNet policy server has three main
functions: 1.) Generating direct load control command, specifically, programming
communication thermostat (PCT) to control T-stat / HVAC for emergency load shedding; 2.)
Generating, managing, and deploying dynamic / variable pricing signal / policy (e.g., critical
peak pricing / CPP) to incentivize peak load reduction; and 3. Sending alert and warning
messages (e.g., electricity price change and / or outage notifications) to consumers. The
PolicyNet server has a web portal interface with a secure authorized user login. The
communication between the utility PolicyNet server and the AMI meter is simulated with a GE
iNet 900 MHz MDS radio network in the laboratory as shown in Figure 7. This simulated
wireless RF connection is to avoid the relative high cost of building a Wi-Max station for the
test. Similarly, for cost reason, power line carrier (Home Plug) is used for the experimental setup
of the AMI meter connection with the home area network (HAN). The GE Wi-Max meter was
used as a communication gateway that connects the utility EMS function and the Home energy
management system.
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Home EMS was setup based on the GE Consumer & Industrial’s smart appliances and home
energy manager products. As shown in Figure 7, smart appliances used in the experimental setup
include washer, dryer, refrigerator, dishwasher, range, and microwave. Also included in the setup
were a smart thermostat and a simulated water meter measurement. A tablet PC was used as the
EcoDashBoard HEM that provided an interface with the consumer for inputting preferences and
for displaying energy related information. The tablet PC was also used as a host of the energy
optimization algorithms. The EcoDashBoard HEM communicates with the smart appliances via
a meshed Zigbee (smart energy profile [12]) network. The EcoDashBoard communicates with
the AMI meter via a Wi-Fi signal converted from a Home Plug power line carrier signal. The
smart appliances have two modes of operation: normal mode and eco-mode (power/energy
saving mode). In eco-mode operation, the appliances consume only a fraction of the power at
normal mode. For example, for the dryer, eco-mode consumes about 30% of the power at normal
mode. The appliances receive a mode control signal from the EcoDashBoard HEM. This mode
control signal can be derived from either a direct load control signal or a critical peak pricing
(CPP) signal. Both direct load control and CPP signals come from the utility energy management
policy server. For the smart thermostat, the optimum temperature setpoint comes from the energy
optimizer that minimizes the energy consumption and the cost of utility bill.

3.5.2  User Control Options of the Test Scenarios

The EcoDashBoard HEM provides high-grained control of the end user load by both the energy
provider and the user. End users, however, are unlikely to respond positively to a system in
which the end user cannot disable features at will. Thus, the EcoDashBoard HEM includes
switches / buttons with which the user can choose to perform manual operation, or, at their
discretion, allow any combination of Optimizer, DLC and CPP responses [13].

Figure 8 "shows a screenshot of the EcoDashBoard display that has the switches on the left-side
which end users can use to select control features. A manual switch can be used to enable or
disable all non-manual advanced control features. In Figure 8, the switches are all in the “off”
position. The actual default is “off” for the manual switch and “on” for the other three. The
majority of the state changes based on electricity price or DLC are triggered by messages from
the message dispatcher — one of the software modules. Although these may occur on a regularly
scheduled basis, users expect a “real-time” response to their input. Thus, a change in the
switches will trigger a state update. For example, if a DLC is in effect and the DLC response is
disabled, the DLC state will be negated. Similarly, if a DLC is in effect and the DLC response is
enabled, the DLC will be instituted. The same is true for the CPP, Optimizer and manual
switches.

Table 20 summarizes all the possible combinations of control options. It is worth noting that
there are a number of control options that are very beneficial to the engineers who are developing
the technology. However, they could be confusing to some consumers for practical deployment.
For commercial applications / implementations, control options will be either automated or
limited to ensure easy use and simplicity. The three combinations high-lighted in Table 20 are
the three test scenarios used in the laboratory validation for this project, and they are discussed in
the following subsections.

* The “Energy Bill Saving” and the “Appliance Power Usage” bar display in all the screenshots of the test results were not kept updated to match
the exact test conditions since the power usages of the individual appliances were not measured in the setups.
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Figure 8 User Control Options of Test Scenarios

Table 20 Available / Possible User Controls Combinations

Control & state

FEATURE

Direct Load Critical Peak
Optimizer [Control (DLC) |Pricing (CPP)
DLC ON Disabled ON N/A
Optimizer
DLC OFF switch OFF N/A
CPP ON N/A N/A ON
CPP OFF N/A N/A OFF
Subject  to
Optimizer ON |DLC state  [N/A N/A
Optimizer OFF|OFF N/A N/A
Manual ON OFF OFF OFF
Optimizer
Manual OFF |switch DLC switch CPP switch
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3.5.3 Direct Load Control for Emergency Load Shedding

Direct load control (DLC) has the highest priority among the three test scenarios / operation
modes we evaluated in the Lab. It is designed for emergency load shedding. When the peak
power of a power system is approached or exceeded, actions must be taken to relieve the power
system overloading condition. Before starting the expensive and time-consuming (to startup)
peaker generators, the preferred option would be to reduce / drop the non-critical loads to
balance the generation and demand. This is typically accomplished via utility commanded DLC.
To implement this control scheme, the utility company will have an agreement or contract in
place with end-users who would allow the utility to control some loads directly as needed. One
hypothetical example is that the consumers would allow the utility company to turn off / cycle
the HVAC system five times a month for 30 min each. In return, the consumer could get a
$5/month credit off the utility bill.

We used HVAC as the load in this DLC lab test since it represents 40-50% of the electrical loads
for a typical household.

In the Lab test, a PCT DLC command was generated in the utility PolicyNet server as shown in
Figure 9. This PCT command offsets the T-stat temperature setpoint by predefined / specified
degrees. An offset of +2 'F was used in the Lab test. This DLC was deployed from the utility
PolicyNet server to the AMI meter through an iNet RF radio. Then the command was passed
from the AMI meter to the EcoDashBoard via the PLC / Home Plug and Wi-Fi communication
as shown in Figure 7. The received DLC command was displayed on the EcoDashBoard display
as shown in Figure 10. Figure 10 also shows a comparison of the T-stat temperature setpoint
display before and after the DLC command was issued. Figure 11 shows that the PCT DLC
command was successfully executed from the EcoDashBoard to the actual device (T-stat) by
offsetting the temperature +2 'F degrees higher. Since both DLC and the energy optimizer have
the ability of setting the thermostat, to avoid conflict, when a DLC command is in effect, the
energy optimizer is disabled or bypassed.

3.5.4 Reducing Peak Power Demand by Utilizing Critical Peak Pricing Signal

This peak load reduction control is designed to be an incentive based voluntary program that
helps consumers reduce utility bill / energy cost while helping the utility company reduce peak
load and relieve power system overloads. The goal of this approach is to take pro-active
measures when peak demand / load is approaching the limit. This would help either avoid the re-
active emergency load shedding situation; or help better plan / predict ahead of time for
emergency load shedding. Both the utility company and the consumers will benefit from this
“less intrusive” program. It is totally voluntary for consumers. The consumer have total / full
control of the optional program by enabling / disabling this feature, by defining CPP threshold
and by defining / specifying other preferences.

To validate this peak load management method, a CPP policy was generated in the PolicyNet
server as shown in Figure 12. There were two tiers (one hour time period for each tier) of CPP
(25 cents/kWh and 15 cents/kWh) in Figure 12. The higher than normal electricity price is used
to simulate / respond to the peak power demand. On the EcoDashBoard, the user can define a
threshold that represents the tolerance / willingness of the consumer to participate in the
voluntary peak power reduction program. In the test, this threshold was set to 10 cents / kWh. In
other words, the customer chooses to reduce his/her power demand if the CCP is greater than 10
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cents/kWh. The power demand / load reduction is done by turning the appliances to eco-mode
(energy saving mode) of operation.

In the test, a cloth dryer was used to demonstrate the peak power reduction . Figure 13 shows the
CPP policy was deployed from the utility policy server to the AMI meter. Figure 14 shows that
the EcoDashBoard HEM has received the CPP info, compared it with the user-defined threshold
(10 cents/kwh), and then decided to turn the dryer into eco-mode of operation. Figure 14 shows
the change of appliance operation mode from “normal to Eco” before and after the CPP
command was executed. Figure 15 shows the actual power demand / consumption drop from ~3
kW (normal mode) to ~1 kW (eco-mode) of the cloth dryer.
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(a) Before (b) After
Figure 11 PCT DLC Commands Executed in T-stat
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Figure 15 Peak Power Reduction Results for Dryer

3.5.5 Energy Optimization by Running the Energy Optimizer

In addition to peak power reduction, base energy load reduction is also an objective of this
project. This is accomplished by running an energy optimizer on the EcoDashBoard HEM that
optimally sets the T-stat and hot water heater temperature setpoints, optimally dispatches solar
PV generation and manages energy storage. This is a closed-loop optimal control that minimizes
energy consumption and utility bill subject to a set of constraints (user defined and/or system /
equipment imposed). The consumers will benefit from this via a utility bill / electricity cost
reduction.

In the specific Lab test, we run the optimizer to set the T-stat temperature setpoint. The input
data required by the optimizer, such as historical energy consumption data, ambient
temperatures, solar insolation forecasts were fed to the optimizer by the data measured from an
employee’s house. The optimizer also has a system identification module that identifies and
updates the thermal model of the house. Figure 16 shows the optimizer being turned on from the
off state. Figure 17 shows the optimal T-stat temperature was calculated and set on the
EcoDashBoard and on the actual device for the morning duration from 8 am — 10 am.
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Figure 16 Energy Optimizer Turned Off and On
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Figure 17 Energy Optimizer Setting the T-Stat Setpoint

3.6. Project Benefits

The direct benefits of the energy optimization system are two fold: 1. Peak load reduction by
emergency load shedding and by utilizing a dynamic / variable electricity pricing signal; and 2.
Energy and cost / utility bill savings via energy optimization.

The peak load reduction benefits the utility companies most while the energy savings are more
for consumers. It has been demonstrated in the laboratory tests that at the individual appliance /
load level, for example the cloth dryer, the peak power reduction can be as much as 70% of the
normal power consumption of the appliance. While this project is not set up to prove / validate
the actual / practical peak power reduction capability of the energy optimization system, analysis
has shown that at a holistic residential level, 15%-25% of peak power reduction is achievable by
implementing the energy optimization / management technology. Utility companies will benefit
from this significant peak power reduction by deferring capital investment on spinning reserve
generation capacity, transmission and distribution infrastructure build-up, etc. This will also
improve power system reliability and customer satisfaction by reducing and minimizing the
number of power outages. Utility companies can and should share the benefits / profits with
customers, thereby encouraging active and large-scale customer participation.

On the other hand, the consumers will benefit the most from the energy savings through the
energy optimization system. This would be evident from the monthly utility bills. The energy
optimization system is set up as an optimization problem with the objective functions of
minimizing energy consumption and utility bills. GE project team has performed DSM benefit
analysis using DOE EIA RECS 2001 data. The results indicated that 13-27% energy efficiency
improvement is achievable by implementing DSM and energy management technologies.
Specifically, the benefit of the energy optimization system developed in this project was
simulated using a California home as an example. The assumptions for this California home are:

e One thermal zone

o Internal heat gain from loads, people

e Natural gas (NG) boiler heating: 13.7 kW, efficiency = 75%
e Electric AC: 2 kW
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o Electric hot water heater: 4.5 kW

o Battery storage: 1.5 kW, 10 kWh

e 2 kW of roof-mounted solar PV

o State-space model: thermal capacitance and resistance.

The yearly sourced energy savings (electricity and NG) were simulated using the model
predictive control (MPC) based energy optimizer with banded temperature setpoints for the
thermostat defined as in Figure 18. The upper and lower temperature bands / bounds were
designed to accommodate the consumers’ comfort level while allowing the setpoint to flow to
enable energy and cost savings. Figure 19 shows the estimated potential energy and cost savings
from the simulation. There are five incremental cases / scenarios simulated:

1. Base-line without energy optimization

2. Manually adjusted thermostat without any automation / optimization
3. MPC based energy optimization with banded thermostat temperatures
4. With solar PV

5. With energy storage.

The energy consumption in kWh for all the five different scenarios were plotted in Figure 19a.
Figure 19b showed the incremental energy and cost savings in the format of a pie chart. One can
see from Figure 19b that there were 3.5% energy and 3.3% cost incremental savings of the
adjusted thermostat from the baseline; 24.1% energy and 18.1% cost incremental savings of the
energy optimization from the adjusted thermostat; 6.9% energy and 14.6% cost incremental
savings by adding solar PV into the optimization; and 0.1% energy and 3.3% cost incremental
savings by adding the energy storage. The biggest gain on energy and cost came from the energy
optimization. It is worth noting that this was only ONE hypothetical example used to illustrate
the potential of the energy optimization on energy and cost savings. The actual energy and cost
savings depends on the specifics of the use cases / applications. Nonetheless, the simulations
showed that energy optimization could potentially provide significant energy and cost savings
directly to consumers.
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Figure 19 Potential Energy Savings by the Energy Optimization

Indirectly, the energy saving will also translate to CO, footprint reduction and environmental benefit. It
would reduce dependence on fossil fuels and strengthen the nation’s energy security.

4. Glossary / Acronyms and Abbreviations

CPP — Critical Peak Pricing

DG - Distributed Generation

DHW — Domestic Hot Water

DLC - Direct Load Control

DOE - Department of Energy

DR — Demand Response

DSM - Demand Side Management

EESM - Electrical Energy Storage Module
EHEMS - EcoDashBoard Home / EcoHome Energy Management System
EIA - Energy Information Administration

EOS - Energy Optimization System

GUI / HMI - Graphical User Interface / Human Machine Interface
HAN — Home Area Network

HCEI — Hawaii Clean Energy Initiative

HNEI — Hawaii Natural Energy Institute

PCT - Programmable Communicating Thermostat
PHEV - Plug-in Hybrid Electric Vehicle

RECS - Residential Energy Consumption Survey
SOC - State of Charge

Solar PV — Solar Photovatic

TOU- Time Of Use.
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