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1.   Executive Summary 
The scope of this project [1] is to develop and demonstrate in a laboratory environment a specific 
portfolio of technologies that enhance the functions and features of the Energy Optimization 
System (EOS) developed at GE Global Research.  This is in support of Hawai‘i Natural Energy 
Institute’s (HNEI’s) contribution to the Hawai‘i Clean Energy Initiative (HCEI) to improve 
overall end-use energy efficiency by improving building system and appliance operating 
efficiencies, as well as by reducing peak demand through usage monitoring and demand response 
equipment installed in residential and commercial structures.  GE’s EOS program is focused at 
the residential level on the following three areas: 1. Defining system requirements and 
specifications; 2. Developing advanced / enhanced functions and features of the energy 
management / optimization system; and 3. Performing laboratory validation tests and analysis. 

The first focus area is on development of functional requirements and conceptual designs for the 
different component technologies that comprise the EOS.  Three EOS conceptual system 
architectures (distributed, centralized, and hybrid) have been developed, compared and evaluated 
with emphasis on the distributed architecture for laboratory validation.  Functional requirements 
and specifications for all key EOS component technologies / modules have been defined.  These 
key components are self-learning and adaptive home models through system identification, 
utility feedback analytics, and direct load control and smart appliances coordination.  Highlights 
of requirement specifications are summarized in this report.  Details of the requirement 
specifications are documented in a separate specification document [2], referenced by this report.   

The second focus area is development of enhanced functions / features of the EOS.  Specifically, 
advanced functions / features include self-learning and adaptive home models, utility feedback 
analytics, and direct load control and smart appliances coordination.  A home thermal model was 
developed to allow the EOS to predict how the home will react to stimuli such as weather, 
HVAC operation, homeowner occupancies.  The model was constructed and updated using a 
system identification technique to enable self-calibrating and updating the model automatically 
for new and retrofit homes.  The model can also be used to track changes to the home structure 
over time as a tool for monitoring / diagnostics.  Utility feedback analytics were also designed to 
provide the utility with valuable information such as sheddable load and available DG generation 
(solar PV and wind, etc.).  Direct load control and smart appliances coordination algorithms were 
developed and validated in GE Global Research’s Smart Grid Laboratory.  

The third focus area is on the laboratory testing, validation and analysis.  Three most applicable 
test scenarios were tested in the Lab with a stressed power grid condition simulated with high 
electricity price.  The three test scenarios are: direct load control (DLC) for emergency load 
shedding; peak power reduction in response to critical peak pricing (CPP) signal; and energy 
optimization for energy reduction and utility bill savings.  Test results met expectations.  All 
three scenarios can be applied with pre-defined priorities per utility and consumer’s needs and 
preferences.  They are complimentary energy management techniques / algorithms that can be 
implemented / deployed individually or in any combination of the three. 

This report is organized as follows.  Section 1 will provide an overview of the background and 
accomplishments of the program.  Section 2 will summarize the status of the project with regards 
to the deliverables and milestones.  Section 3 will detail technical results of all the six tasks and 
deliverables.  Section 4 provides reference material and archival locations of detailed 
documentation developed throughout the course of executing the program.  
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2.  Background  
An objective of the Hawaii Natural Energy Institute’s (HNEI) contribution to the Hawaii Clean 
Energy Initiative (HCEI) is to improve overall end-use energy efficiency by improving building 
system and appliance operating efficiencies, as well as by reducing peak demand through usage 
monitoring and demand response equipment installed in residential and commercial structures.  
Toward this goal, HNEI is examining new technology development for home energy 
management systems, which can coordinate demand side management, peak demand response, 
and end use energy efficiency.   

Through expanded collaboration with GE Global Research, development was undertaken to 
develop control algorithms necessary to efficiently manage energy utilization in the home. This 
effort is instrumental in supporting present and future projects for home and community energy 
management such as the on-going Maui Smart Grid Demonstration project.  

Smart home energy management technologies have been developed that have the capabilities to: 

a. Balance on-site home energy generation, energy storage with load energy usage; 

b. Coordinate operation of energy generation, energy storage and load usage to minimize 
utility energy cost while adhering to homeowner preferences; 

c. Receive and utilize utility electricity rate tariff (direct and market-based) along with 
forecast weather and environmental information to perform the energy and cost 
optimization function; 

d. Interface with advanced meters to provide trending and reporting; and 

e. Interface with smart appliances and coordinate their operations in various energy savings 
scenarios. 

The energy optimization system (EOS) consists of an energy management platform, which 
interfaces to smart meters, smart loads within the home as well as smart energy generation and 
energy storage components.  The homeowner interfaces with the EOS system through a user 
interface display.  The central element of the EOS system is an energy-optimizing engine, which 
is based on model-based predictive controls.  The energy optimizing engine utilizes forecast 
weather, solar insolation and utility electricity tariff, coupled with sensors within the home, along 
with a thermal and energy model of the home to plan the optimal usage of the thermostat, control 
the storage level of energy storage and manage the operation of the smart appliances.  The key 
value to the homeowner is the real-time estimate of energy uses and monthly savings, as 
homeowners make adjustments to their preferences on the user interface display.  The key value 
to utility is the validation and quantification of actions from demand response events and the 
estimation of home actions in the event of utility demand response request. 

The energy-optimizing engine could be utilized in many different conservation or incentive 
programs and scenarios.  It can be used for many different functions such as energy home 
automation to education and informational to tracking and reporting.  The EOS system enables 
homeowner and the utility to capture a significant entitlement of smart grid ownership and smart 
appliances ownership as it allows the various subsystems to work in unison as a single system. 
 
2.1  Prior Energy Management Technology Development 

With regard to home energy automation functions, the EOS system automates the energy 
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savings, empty house setbacks, pre-cooling of the house for peak load reduction, and peak load 
reduction operation of all the major loads including appliances, heating, ventilating and air 
conditioning (HVAC), water heating, lighting, and miscellaneous electric loads.  The EOS 
system receives pricing signals from the utility smart meter, such as time-of-use rate tariff, real-
time pricing tariff or critical peak pricing, and parses it for usage in the optimizer engine.  The 
EOS system also receives forecast weather and solar insolation from weather servers, which 
resides on the web and parses it for usage in the optimizer engine.  The EOS system interfaces 
with all major loads via a wireless interface, e.g., Zigbee, and is able to command the appliances 
to temporarily enter into a reduce power state or shift to later operation where possible. 

With regard to education and informational function, the EOS provides real-time estimates on 
the user display of energy usage and utility cost.  The estimates can be showed for what is saved 
at the end of the month or for the next billing cycle (30 days from now).  The EOS system 
utilizes the energy optimizer engine along with historical trends and forecast weather information 
to make this estimate. 

With regard to tracking and reporting, the EOS system reports on the user display real-time 
usage of electricity.  The information is stored and is trended over various time intervals (in days, 
weeks, months, and years).  A similar tracking and reporting scheme can be easily implemented 
for water usage, natural gas usage as well as solar power production, if the inclusion of those 
systems were made to the EOS system. 
 
2.2  Project Objectives 

Enhanced functions and capabilities to its Energy Optimization System (EOS) were developed 
including: 

a. Adaptive and self-learning energy optimizing engine 
b. Utility feedback functions such as direct load control analytics and critical peak 

pricing analytics 
c. Negotiator with discrete operation smart appliances - Planning algorithm.  

GE will also establish functional description of capability and functionality of the above 
enhancements to EOS system. 

Six tasks were undertaken to achieve the set objectives.  The tasks are: 1. Define system 
requirements; 2. Develop self-learning and adaptive algorithms; 3. Develop utility feedback 
analytics; 4. Coordinate EOS with smart appliances; 5. Perform laboratory tests and analysis; and 
6. Manage project and write progress and final project reports.  Accomplishments and detailed 
results of all the six tasks are discussed in the following Sections. 
 
3. Technical Results of Tasks and Deliverables 

3.1  Requirement Definition 

3.1.1  System Communication and Controls Architecture 

There are four major functional subsystems or modules for the EOS1 system: the energy 
management engine (energy optimizer), connectivity to the grid / utility, connectivity to (and 
control of) appliances, and the user interface / human machine interface (UI / HMI).  The energy 

                                                      
1 EOS and EHEMS are used interchangeably in this document and references. 
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optimizer is the “brain” of the system.  Depending on where the optimizer is physically located, 
there are three major configurations for EOS: centralized, distributed and hybrid.  All three major 
architectures / technologies shall be available to customers with the default or preferred 
configuration being the hybrid architecture. 

Figure 1 (A) shows a centralized EOS where the optimizer is located outside the home / user 
premise on a centralized server.  In this configuration, one server or energy optimizer shall 
control / manage a number of homes. All the energy optimization / management intelligence 
resides in the centralized server.  The server can be in the utility monitoring and control center; 
can be in a GE supervisory center; or can be in a third party managed service center.  The 
centralized architecture has potential lower hardware cost, lower service cost, and better 
maintainability (e.g., software and hardware upgrade).  It can also be better (more seamlessly and 
securely) integrated with other energy management systems (at transmission and distribution 
levels) within the entire smart grid.  Although the optimization algorithms are located outside the 
home on a centralized server, the end-users shall still have full access and control to the EOS.  In 
other words, the user shall be able to log on to his / her individual account on the server and 
input preferences, overwrites, or bypasses.  The limitation or drawback of the centralized EOS is 
elevated Internet / network traffic since the server has to communicate via Internet network with 
multiple homes. 
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Distributed EOS System Functional Block 
Diagram (B) 

Figure 1 EOS System Functional Block Diagram 
 
 
Figure 1 (B) shows a distributed architecture of the EOS where the energy optimizer resides in 
individual homes.  Each home has its own dedicated energy optimizer implemented in a 
computer or embedded / specialized controller.  The energy optimizer may also reside in smart 
thermostat, cable set-top box, “smart” in-home display, or other computing / smart devices with 
sufficient computing capability and memory in order to perform optimization and with ability to 
display parameters and accept user inputs.  In contrast to the centralized EOS, the distributed 
architecture has all the energy management functions and intelligence installed on a personal PC 
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in the home.  It communicates and interfaces with all the other key smart home components 
(such as smart meter and appliances) right in the home. It, therefore, does not require / demand a 
lot of network traffic.  The downside of the distributed EOS is that it potentially has higher 
overall system (capital) cost, it also puts burdens / relies on the end consumers for upgrade and 
maintenance. 

The hybrid architecture has the same hardware / communication configuration as the centralized 
one as shown in Figure 1 (A).  The difference between the centralized and hybrid architectures is 
that energy management functions / intelligence all reside in one server for the centralized 
configuration; whereas the management function / intelligence is split between the server and the 
smart panel in the home for the hybrid architecture.  This hybrid approach of distributing energy 
management / optimization algorithms / intelligence between server and in-home smart panel / 
other in-home control device is more evident in the software architecture in Figure 2 which will 
be discussed in the software architecture Section.  

In the connectivity to the grid / utility, Wi-Max and Silver Spring Network (SSN) was used to 
connect the meter with the utility policy server for illustration only.  The architecture shall be 
and is flexible to adapt to other types of radio frequency (RF) networks, for example Sensus 
Flexnet or Itron AMI network.  For SSN network (connection), Zigbee rather than Home Plug 
will be the media to connect meter to the rest of the EOS (for example UI/HMI) within the home. 

Similarly in the connectivity to the (smart) appliances, Zigbee was used for illustration purpose; 
other wireless and wireline communications, such as Wi-Fi, Z-wave and Home Plug, can and 
shall be adapted to the architecture.  Wireless communications are preferred / default protocols 
for better mobility.  In homes with the intelligent load panel, some of the appliances shall be 
linked to the intelligent load panel to simplify the system (hardware / physical wiring). 

In the user interface or human machine interface module, the preferred communication protocol 
of the UI / HMI to the rest of the EOS is the Wi-Fi wireless connection.  This allows the user to 
freely move the UI within the home premise. 
 

3.1.2  Software Architecture / Hierarchy 

Figure 2 shows a software architecture for all the three possible system configurations: 
distributed, centralized and hybrid architectures.  While the location of the intelligence is 
relatively straightforward for the distributed and centralized configurations, the split of the 
intelligence for hybrid architecture is application dependent.  One example of this hybrid 
approach of distributing energy management optimization algorithms and intelligence between 
server and in-home smart panel or other in-home control device is that the data pre-processing 
(such as data filtering and averaging), diagnostics and prognostics reside within the home; and 
all the other computing and memory intensive optimizations reside on the centralized server.  
This hybrid architecture can best utilize all the local and global (central) resources effectively to 
minimize the network data traffic and maximize the system efficiency and speed. 
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Figure 2 EOS Software Architecture / Hierarchy 
 
 

3.1.3  System Functional Requirements 

In this section, we look at requirements from the major functionality and feature perspective.  In 
other words, we define what major functions and features the EOS shall provide and offer, 
respectively. 

The EOS shall perform the following major functions: 

 Optimize (minimize) energy consumption and cost (utility bill); 

 Provide DR / DSM to enhance grid efficiency and reliability; 

 Communicate in two-way mode securely with the grid and utility; 

 Control appliances with secure two-way communication; and 

 Provide an informative and user friendly graphical interface. 

The EOS shall interface with utility advanced meters enabled with secure two-way 
communication, which creates and enables all other capabilities within the system.  This 
interface may carry various data types including sensitive data, confidential data, and load 
control / DSM data.  Specifically it shall receive and utilize utility electricity rate tariffs (direct 
and market-based) through the meters, along with forecasted weather and environmental 
information from the Internet to perform energy management functions.  Appropriate levels of 
security must be provided for these types of communications.  Security is critical.  It protects 
consumers, utilities and (other) energy service providers’ assets while enabling next-generation 
applications and capabilities. 
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It shall manage and optimize on-site home energy generation, energy storage and load usage to 
minimize energy consumption and utility bills, subject to external signals and homeowner 
preferences. 

It shall interface with smart appliances via two-way secure communication and coordinate their 
operations in various energy saving scenarios.  

It shall interface with end users to receive customers’ preferences, overwrite commands / 
settings; and provides end users with feedback information such as cost of energy, utility bill 
trending, and other real-time alert messages. 
 

3.1.3.1  Energy Optimization System (EOS) Requirements 

3.1.3.1.1.Energy Optimization System Functional Requirements 

The Energy Optimizer (Optimization Engine) shall consist of an energy management platform, 
which interfaces to communicating electricity meters, residential energy generation technologies 
such as solar PV, on-site energy storage and interruptible smart loads within the home.  A 
homeowner interacts with the optimizer through a graphical user interface display.   

The central element of the energy optimizer is an energy-optimizing engine, which utilizes 
historical information, sensed information describing the present system state, and forecasted 
information about the future such as Time-of-Use rate information, weather and solar insolation 
as inputs, and then seeks to identify optimal settings for controllable energy elements within the 
home such as smart appliances, and interruptible thermostats and storage devices.   

The optimizer shall be multi-objective in nature, and can satisfy multiple trade-off objectives 
such as reducing monthly utility bills and maximizing solar energy utilization, based on user 
preferences.  The energy optimizer shall be able to provide the end users with a real-time 
estimate of the impact of changes in the settings of a device such as a thermostat, on their 
monthly utility bill or other optimization objective targets.  

The energy optimizer shall provide basic trending and feedback functions that are of value to 
residential users.  In particular, it shall trend electricity, water and natural gas consumption and 
shall report real-time status as well as daily, weekly and monthly consumption statistics.  It shall 
also trend and report solar energy production and battery storage utilization, if available in the 
home / building.  The optimizer shall also provide estimates of the monthly utility bills given 
current optimization engine settings. 

The optimizer shall receive pricing signals through the utility meter (time-of-use rates, real-time 
pricing rates, etc.) and parse them for usage in the optimization engine.  The system shall also 
receive forecasted weather and solar insolation from weather servers, which reside on the web, 
and parse these forecasts for usage in the optimizer.   

The energy optimizer shall interface with communicating appliances, via wireless or wireline 
(e.g., Zigbee or Home Plug) interfaces. 

Specifically, the energy optimizer shall be / contain a set of control algorithms and associated 
software packages / programs that optimize / minimize the total energy cost of the home / system 
subject to constraints and user preferences by performing the following major functions: 

1. Providing the optimal thermostat Setpoints for all the thermal zones in the house / 
building 
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2. Providing the optimal water tank temperature setpoint 

3. Controlling and Managing the power / energy exchange among grid, solar PV, 
batteries, and loads 

4. Providing total electricity and minimized fuel costs. 

The optimizer shall be customized to an individual home / building, and it shall be capable of 
adapting to a variety of homes / buildings and conditions.  This includes different homes / 
buildings and the various conditions (e.g., aging) of the same home / building. If a home / 
building model is used in the optimizer it shall have the system identification capability to adjust 
the models to adapt to the new conditions.  The optimizer shall be able to communicate both 
ways (taking inputs from and displaying outputs to) with the EOS user interface / human 
machine interface for user settings and preferences, and for displaying relevant information such 
as total electricity and fuel costs. 

The optimizer, although capable, is not intended for direct load control purpose / functionality 
for modularity reason.  The direct load control shall be a separate module that is specified in the 
next section. 

The energy management system shall leverage historical energy usage statistics compiled 
throughout its operation to establish estimates of periodic (e.g., hourly) energy consumption, 
ambient temperature, solar insolation and other variables that can be used for planning how to 
best operate the controllable elements throughout the day.  Where possible, forecasted data shall 
also be used to help the control system planning.  Forecasted data may include time-of-use 
(TOU) electricity rate profiles, including peak-activated rates; solar insolation forecasts; and 
ambient temperature and wind forecasts.  A block summary diagram of the energy optimizer is 
shown in Figure 3. 
 
 

 

Figure 3 Energy Optimizer Functional Block Diagram 
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3.1.3.1.2. Constraints and Objective Functions 

The energy optimizer optimizes (minimizes or maximizes) objective functions subject to 
physical, practical and economic constraints.  Specifically the EOS energy optimizer is designed 
to optimize energy utilization to meet end-user / consumer objectives [8], such as: 

 Minimizing energy consumption and cost / bills (electric, gas, oil); 
 Reducing wasteful energy utilization in the home; and 
 Stabilizing the local community grid through demand-response participation. 

Of course, the objectives for each home will be different, as they will be determined by 
homeowners through input to a human machine interface – EcoDashBoard panel.  Along with 
these objectives, homeowners can also specify home operation constraints, such as upper and 
lower bounds on zonal temperatures, and deferrable and sheddable load preferences. 

Certain classes of equipment will also introduce constraints on the control, such as, 

 Battery depth of charge and charge/discharge rates 
 Equipment cycling limits. 

Table 1 lists typical constraints for the optimization engine.  There are two sets of constraints: 
hard constraints that must be met; and soft constraints (in italic) that are nice to have.  The soft 
constraints shall be formulated into the objective function(s) with a weighted penalty factor (or 
slack variable).  The penalty weighting factors are part of the critical specifications listed in 
Table 6; and shall be specified / input by the installer at commissioning of the system. 
 
 

Table 1 Optimizer Constraints 

T-stat - HVAC 
Constraints 

DHW 
Constraints 

Battery Constraints PV Dispatch 
Constraints 

Load Dispatch 
Constraints 

Power balance 
among grid, DG / 
PV, EESM, and load 

Power within 
bounds 

Physical non-
negative power 

Power within 
bounds 

Maximum power 
exchange with 
battery within limits 

Power / energy 
balance 

Power balance at 
the load 
(demanded – 
sheddable) = net 
power provided 
to load 

Temperature 
within bounds 

Penalty on excessive 
cycling (charge and 
discharge) 

Charge SOC / energy 
upper limit 

Penalty on 
deviating from 
desired temp 

Temperature 
within bounds 

Discharge SOC / 
energy lower limit 

Physical non-
negative power 

Non-negative 
sheddable loads 
and within 
bounds 
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3.1.3.1.3. Inputs and Outputs of the Energy Optimizer 

Inputs and outputs of a system / subsystems are relative and depend on the boundaries of the 
system / subsystems of interest.  In this document, we look at the inputs and outputs from a 
software architecture perspective.  Specifically the inputs and outputs shall refer to the ones 
defined by the subsystems / modules outlined in Figure 2. 

The inputs and outputs of the optimizer are the critical parameters of the module.  Figure 4 
illustrates the input and output relationships.  There shall be three groups of inputs fed into the 
optimizer: user inputs (from UI / HMI dashboard), acquired (e.g., from weather web server), or 
predicted inputs and measured (e.g., from sensors) or observed inputs.  Tables 2 to 4 list the 
details of the inputs in each respective group.  Table 5 lists the outputs from the optimizer [8]. 
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Figure 4 Optimizer Input Output Diagram 
 
 
In order for the optimizer to function, the critical specifications that define the physical property 
of the EOS system (house) have to be specified to the optimizer.  Table 6 tabulates all the critical 
specifications for the optimizer. 
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Table 2 User Inputs from UI / HMI 

Input Description Units Size Data Type 

Preferred Temperature Setpoints F nz  N Float Matrix 

Temperature Lower bounds F nz  N Float Matrix 

Temperature Upper Bounds F nz  N Float Matrix 

Water Tank Temperature Lower Bounds F N Float Vector 

Water Tank Temperature Upper Bounds F N Float Vector 

Allowable Load Shedding Tier1 W N Float Vector 

Allowable Load Shedding Tier2 W N Float Vector 

Allowable Load Shedding Tier3 W N Float Vector 

 
 

Table 3 Predicted or Acquired Inputs 

Input Description Units Size Data Type 

Ambient Temperature F N+1 Float Vector 

Internal Heat Gains W nz  (N+1) Float Matrix 

Predicted Outflow from Tank Gal/min N Float Vector 

Predicted Solar PV W N+1 Float Vector 

Load Demand Tier1 W N+1 Float Vector 

Load Demand Tier2 W N+1 Float Vector 

Load Demand Tier3 W N+1 Float Vector 

Load Demand Tier4 (critical) W N+1 Float Vector 

Buy Price from Grid Cents/kWh N Float Vector 

Sell Price to Grid Cents/kWh N Float Vector 

Heating Price Cents/kWh N Float Vector 

Cooling Price Cents/kWh N Float Vector 

Water Heating Price Cents/kWh N Float Vector 

 11



 

Table 4 Measured and Observed Inputs at Present Time Instant 

Input Description Units Size Data Type 

Current Temperatures F nz Float Vector 

Battery State of Charge W 1 Float 

Power Flow from Grid to Batteries W 1 Float 

Power Flow from PV to Batteries W 1 Float 

Power Flow from Batteries to Loads W 1 Float 

Power Flow from PV to Loads W 1 Float 

Power Flow from PV to Grid W 1 Float 

Power Flow from Grid to Loads W 1 Float 

Current Supplied Load, Tier1 W 1 Float 

Current Supplied Load, Tier2 W 1 Float 

Current Supplied Load, Tier3 W 1 Float 

Table 5 Optimizer Outputs 

Output Description Units Size Data Type 

(Actual) Temperature Setpoints F nz  N Float Matrix 

Hot Water Temperature Setpoints F N Float Vector 

Power Flow from Grid to Batteries W N Float Vector 

Power Flow from PV to Batteries W N Float Vector 

Power Flow from Batteries to Loads W N Float Vector 

Power Flow from PV to Grid W N Float Vector 

Power Flow from PV to Loads W N Float Vector 

Power Flow from Grid to Loads W N Float Vector 

Grid Generation (Net) W N Float Vector 

Total Electricity Cost $ N Float Vector  

Total Fuel Cost $ N Float Vector 
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Table 6 Critical Specifications of the Optimizer 

Critical Specification Description Units Size Data Type 

Number of Time Steps (N)  1 Int 

Time Step of Calculation (Ts) Min 1 Float 

Number of Thermal Zones (nz)  1 Int 

Thermal Model Matrix1  nz  nz Float Matrix 

Thermal Model Matrix2  nz  1 Float Matrix 

Thermal Model Matrix3  nz  nz Float Matrix 

Thermal Model Matrix4  nz  nz Float Matrix 

Thermal Model Matrix5  nz  nz Float Matrix 

DHW Model Matrix1 W 1  1 Float Matrix 

DHW Model Matrix2 W 1  1 Float Matrix 

DHW Model Matrix3 W 1  1 Float Matrix 

DHW Model Matrix4 W 1  1 Float Matrix 

Battery Time Constant  1 Float 

Max HVAC Consumption, Heating W 1 Float 

Max HVAC Consumption, Cooling W 1 Float 

Max DHW Power Consumption W 1 Float 

Max Battery Charge Power W 1 Float 

Max Battery Discharge Power W 1 Float 

Max Energy Capacity of Batteries Wh 1 Float 

Min Energy Level Batteries Wh 1 Float 

Weight on Violation of Temperature Bands  1 Float 

Weight on Deviation from Desired Temperature   1 Float 

Weight on violation of DHW Temperature Limits  1 Float 

 13



 

Weight on violation of SOC limits  1 Float 

Penalty on Load Shedding, Tier1  1 Float 

Penalty on Load Shedding, Tier2  1 Float 

Penalty on Load Shedding, Tier3  1 Float 

 
 

3.1.3.2  Requirements of Self-learning and Adaptive Home Models Integrated into  
 EOS 

3.1.3.2.1. System Identification Functional Requirements 

If the energy optimizer relies on a set of mathematical models that represent the physics of the 
house / residence, the system shall have the capability / ability to self-identify, construct, and 
update periodically the models by initiating a set of runs that are non-invasive / non-intrusive to 
the customers / users. The complete and comprehensive system identification shall be run at EOS 
commissioning and at any major house modifications that would significantly impact on the 
thermal property of the premise. In addition, the system shall be able to adapt to seasonal climate 
changes with fine tuning of the models by self initiating a subset of the system identifications 
runs. The system ID algorithms shall have the intelligence to detect abnormal conditions (such as 
open windows and doors) to prevent the system ID from running. Such conditions would, 
otherwise, have skewed the system ID and mathematical models. 

The interactive relationship of the system ID function with the energy optimizer and other 
functional modules of the system is illustrated in Figure 2. 

3.1.3.2.2. System Identification Inputs and Outputs 

From the software architecture shown in Figure 2, the EOS energy optimizer uses a set of models 
to optimize and control the energy system. The models allow the energy optimizer to predict how 
the home reacts to stimuli such as weather, HVAC operation, homeowner occupancy.  The 
models shall be constructed and updated automatically by the energy management system using 
system identification (ID) technique to enable self-calibrating / updating the models with 
minimum user interaction for easy and low-cost installation for both new and retrofit homes. 
They may also be used to track changes to the home structure over time as a means to do 
monitoring and diagnostics. 

The system identification for the thermal model used for HAVC system monitors the thermal 
inputs to the home and the resulting variation in temperature to estimate a model that captures 
the zonal temperature response. Then this estimated thermal model is passed to the optimizer 
block to compute optimal setpoints for the rest of the energy management system. 

The inputs and outputs of the thermal model system identification are tabulated in  
Table 7, Table 8 and Table 9. 
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Table 7 Outputs of the System ID 

Output Description Units Size Data Type 

Thermal Model Matrix1  nz  nz Float Matrix 

Thermal Model Matrix2  nz  1 Float Matrix 

Thermal Model Matrix3  nz  nz Float Matrix 

Thermal Model Matrix4  nz  nz Float Matrix 

Thermal Model Matrix5  nz  nz Float Matrix 

 

Table 8 Critical Specifications of the System ID 

Critical Specification Description Units Size Data Type 

Time Step of Calculation (Tsid) Min 1 Float 

Number of Thermal Zones (nz)  1 Int 

Max HVAC Consumption, Heating W 1 Float 

Max HVAC Consumption, Cooling W 1 Float 

Initial estimate of error covariance  (4nz+1) (4nz+1) Float Matrix 

Initial estimate of thermal model matrices  nz (4nz+1) Float Matrix 

Forgetting factor in least square estimator, 0<<1)  1 Float 

Forgetting factor in least square estimator, =1-  1 Float 

 

Table 9 Inputs of the System ID 

Input Description Units Size Data Type 

Ambient Temperature F 1 Float 

Internal Heat Gains W nz  1 Float Matrix 

Current Temperatures F nz Float Vector 

HVAC Heating Load W 1 Float 

HVAC Cooling Load W 1 Float 
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3.1.3.3  Functional Requirements of Utility Feedback Analytics 

The EOS shall be connected securely with two-way communication to the electrical grid / utility 
server. This two-way communication shall provide means / physical media for information 
exchange between the EOS and the utility. Both AMI wireless RF networks, such as Wi-Max 
and Silver Spring Networks (SSN), and wireline broadband connection (if existing) shall be 
made available to connect the EOS and the utility server. The broadband connection is especially 
critical to the early EOS adoption since it is widely (60%-70%) available now / already in North 
American households. 

This connectivity shall provide various types of communication to support anticipated market 
growth. Three communication type examples include public pricing signaling, consumer specific 
signaling, and control signaling. Public pricing is the communication of material, which is 
publicly available. Consumer-specific signaling would be signaling that supports a home energy 
management system. Control signaling are those signals used to support load shedding. 

Each signal type warrants individual security and privacy analysis and treatment. In particular, 
consumer-specific information signaling shall have additional privacy measures and methods. 

The EOS shall provide back to the smart meter and then to utility server the following feedback 
analytics information upon a query request initiated from the meter / server: 

 Shedable electrical loads and status / mode 
 Distributed (e.g., solar PV) power / energy generation 
 Local energy storage 
 Plug-in Hybrid Electric Vehicle (PHEV) ID 
 PHEV electrical energy consumption / generation 
 User preferences / acceptance on direct load control. 

This function establishes the load state of the home and estimates the sheddable elements, which 
are prioritized, based on electricity price and the load shedding signaling severity.  The load state 
and sheddable load profile can be communicated to the utility’s demand response (DR) back-
office application to reduce uncertainty of sheddable load and improve DR system effectiveness 
and reliability. 
 

3.1.3.4  Requirements of Planning Algorithms for Smart Appliance Coordination 

3.1.3.4.1. Smart Appliance Coordination Functional Requirements 

The smart appliances in a home or premise are controlled and coordinated in two groups / 
modules. As discussed in Section 0, the EOS controls and coordinates the thermostat / HAVC, 
water heater, and Solar PV and battery storage. All the other smart appliances are controlled and 
coordinated via the direct load control module as discussed in detail in Section 0.  

The direct load control functionality enhances the EOS by complimenting the energy optimizer. 
It shall include direct load control analytics, the utility feedback analytics, load scheduling, usage 
planning and negotiation. It provides a channel for the utility’s DSM to control (e.g., turn off) the 
loads that are not managed by the optimizer. The directly controlled loads, including the priority 
/ order in which the loads are turned off, shall be specified and agreed by the users. The user 
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shall also have the ability / option through the user interface to allow or disallow / overwrite the 
direct load control functionality.  

Direct load control analytics integrate the utility’s direct load control signaling into the EOS and 
gives the utility control of home loads in the event of a utility direct load control signal.  

The direct load control module shall negotiate and plan usage for discrete-operation smart 
appliances.  This function plans and coordinates the operation between smart appliances based 
on the appliance’s constraints, user preferences and priority, and cost of operation. 

The interface between the EOS and the smart appliances defines controls, measurement and 
monitoring applications. The control commands flow from the EOS to smart appliances while 
the measurement and monitoring information is fed back from the appliances and measurement 
devices to the EOS. 

Most of the functions and information flow defined and described below apply to smart 
appliances. For existing traditional appliances, the control application will be predominately 
discrete on and off controls with a smart outlet plug. 

 

3.1.3.5  EOS to Smart Appliances 

Control applications respond to control signaling / command from the EcoDashBoard and / or 
the EOS. There are typically two types of commands: 

1. Set a control reference target / setpoint for an appliance or equipment, such as the T-
stat Setpoint for HAVC and temperature Setpoint for DHW. They are part of the 
outputs from the energy optimizer 

2. Command a device or appliance to turn on, off, or cycle at configurable time 
intervals or thresholds, or enter into an energy saving (Eco) mode. These are outputs 
from the direct load control module. 

Specifically, the following functions / information exchange are required for this application 
interface [9]: 

1) Appliance and device shall accept control signals from EcoDashBoard and EOS 

2) Appliance and device shall respond to requests to cease operational state (e.g., open 
contact, turn off device) 

3) Appliance and device shall respond to requests to resume operational state (e.g., 
close contact, turn on device) 

4) Appliance and device shall respond to requests to cease operational state (e.g., open 
contact, turn off device) at a specific time 

5) Appliance and device shall respond to requests to resume operational state (e.g., 
close contact, turn on device) at a specific time 

6) Appliance and device shall delay restoration of operational state based on a pre-
configured time (e.g., random number) 

7) Appliance and device shall respond to request to cycle operational state (i.e., duty 
cycle) 
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8) Appliance and device shall respond to request to limit operational mode based on 
thresholds, setpoints, and / or triggers (e.g., price points) 

9) Appliance and device shall respond to requests for variable output (e.g., load 
limiting, energy saving mode). 

 

3.1.3.6  Smart Appliances to EOS 

Measurement and monitoring applications provide internal data and states / status, that include 
DG (e.g., solar, wind, and fuel cell), metering of devices within the premise (e.g., consumer 
PHEV), monitoring of local conditions (e.g., temperature, humidity, time, airflow, ambient light 
level, motion), and monitoring of a device state. These applications provide inputs to the EOS 
and enable processing, optimization, and action based upon the inputs. 

Detailed and specific functions / information flow from appliances and devices to EcoDashBoard 
are listed below [9]: 

1) Appliance and device shall acknowledge receipt of control signal 

2) Appliance and device shall acknowledge execution of control signal 

3) Appliance and device shall notify execution failure of control signal 

4) Appliance and device shall signal any consumer-initiated overrides from the 
appliance 

5) Appliance and device shall measure and report instantaneous power demand 

6) Appliance and device shall measure and report total accumulated energy 
consumption 

7) Appliance and device shall measure and report total accumulated energy production 
/ DG 

8) Appliance and device shall measure and report periodic accumulated energy 
consumption for a configured time interval (e.g., Wh, BTU, HCF) 

9) Appliance and device shall measure and report accumulated energy production / DG 
for a configured time interval 

10) Appliance and device shall store interval measurement (e.g., 30 days of interval 
reads) 

11) Appliance and device shall allow interval configuration (e.g., 15 minutes) 

12) Appliance and device shall monitor and report energy state (e.g., state of charge) 

13) Appliance and device shall measure and report available capacity (e.g., W, Volt-
Amps) 

14) Appliance and device shall monitor and report device state (e.g., operational, stand-
by, maintenance) 

15) Appliance and device (e.g., inverter) shall monitor and report the operational mode 
(e.g., charging, discharging) 
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16) Appliance and device shall measure and report power quality (e.g., frequency, 
neutral voltage, harmonic content) 

17) Appliance and device shall monitor and report environmental state (e.g., 
temperature, motion, wind). 

3.1.3.6.1. Direct Load Control Module Inputs and Outputs 

 

Table 10 Outputs to Appliances from EOS 

Output / Appliance Mode / Range Signal Type (Parent) Module 

Eco Digital (D) Direct Load Control (DLC) 
Refrigerator 

Normal Digital (D) DLC 

Dimmable (0-100%) Analog (A) DLC 
Lighting 

On / Off D DLC 

T Setpoint A Optimizer 
Thermostat 

On / Off D DLC 

T Setpoint A Optimizer 
Hot Water Heater 

On / Off or Eco/Normal D DLC 

Washer On / Off or Eco/Normal D DLC 

Dish Washer On / Off or Eco/Normal D DLC 

Dryer On / Off or Eco/Normal D DLC 

Pool Pump On / Off or Eco/Normal D DLC 

PHEV On / Off or Eco/Normal D DLC 

 
 
3.2  Self-learning and Adaptive Algorithms 

For Task 2 of the enhanced energy optimization system project, GE’s committed effort was to 
develop, implement and test a system identification (ID) algorithm that is complementary to the 
energy optimizer by periodically identifying and adjusting the home models to adapt to the 
changing conditions (such as seasonal change and house aging). 

The system ID algorithms have been developed, implemented and tested for convergence and 
robustness. The detailed results are described in the following sections. 
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3.2.1  Background 

System identification is the process of building a mathematical model of a dynamic system based 
on measured data from the system that is being identified.   

In the context of the home energy management system, system ID is used within the optimizer to 
estimate the thermal model of the home.  The following discrete-time, first order home thermal 
model is being used:  
 

1 2 3 3( 1) ( ) ( ) ( ) ( ) (a t h h cT k AT k B T k B Q k B u k B u k      )c  

Where 
1. k  is the index of a given time step 
2. znT R is the vector of temperatures in each zone ( zn : number of zones) 

3. aT is the ambient temperature 

4. zn
tQ R is the vector of heat gains (internal, from people or equipment) 

5. ( ) zn
hu k R  is the HVAC heating load, and ( ) zn is the HVAC cooling load cu k R

6. 1 2 3 3, , , ,z z z z z z z z zn n n n n n n n n
h cA R B R B R B R B R         are matrices of parameters that 

need to be identified. 
 
The system ID monitors the thermal inputs to the home and the resulting variation in the zonal 
temperatures.   The inputs to the system ID model are the measured room temperature (T), 
measured ambient temperature (Ta), prescribed internal heat gain (Qt), measured heating load 
(uh), and measured cooling load (uc).  Using this input data the system ID updates the estimated 
thermal model of the home, the A, B1, B2, B3h, and B3c matrices, using the least squares error 
method.  In order for the optimizer to work effectively, the response of the system ID model 
must closely predict the thermal response of the house.  To achieve this goal, a recursive system 
ID algorithm has been used; the thermal model is updated online as the input data is received, 
thereby allowing it to follow changes in the thermal response of the home caused by seasonal 
changes, structural changes, open windows, etc. 

The optimizer uses the thermal model to calculate the optimum temperature set point for all 
zones in the house so as to minimize the cost of heating or cooling required for maintaining the 
temperatures within a user defined comfort zone. 
   

3.2.2  System Identification Algorithm 

The following system ID algorithm has been implemented in the optimizer: 
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3.2.3. Results 3.2.3. Results 

Recent work on the system ID portion of the optimizer focused on three areas:  Recent work on the system ID portion of the optimizer focused on three areas:  
 Assess the benefit of system ID  Assess the benefit of system ID 
 Improve system ID performance  Improve system ID performance 
 Test system ID robustness.  Test system ID robustness. 

  

3.2.3.1. Assess the benefit of system ID3.2.3.1. Assess the benefit of system ID 

To assess the benefit of system ID, we simulated the optimizer with five different amounts of 
mismatch between the actual home model and the estimate.  System ID was not used for these 
simulations so the initial model estimates were not updated.  Each simulation was run for a time 
segment from July 1 to July 10 using California as the geographic area.  Results are shown in 
Table 11. 
 
 

Table 11 Benefits of System ID 

Simulation Description Results 

Case # 
a11 and a22 
mismatch 

Cost of 
Electricity and 

Gas($) 

Electrical Energy 
Consumed 

(kWh) 

Temp. Bounds 
Violation 

1 0 47.37 321.0 No 
2 +10% 45.35 317.2 Yes 
3 -10% 52.31 338.0 No 
4 +20% 45.40 319.1 Yes 
5 -20% 67.88 430.2 Yes 

 
The above was compared to a simulation run using system ID for the same time segment and 
geographic location.  The following initial estimate was used: 
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The actual model parameters determined from the Doe-2 simulation are: 
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The results obtained from this simulation are: 
 Cost of electricity and gas: $47.37 
 Electrical energy consumed: 321.0 kWh 
 No temperature violations after initial transient. 

 
The above results show that running the optimizer without system ID can result in temperature 
violations and/or increased cost depending on the degree of model mismatch as the data shaded 
yellow in Table 11.  It is clear that system ID must be a part of the optimizer to make an accurate 
estimate of the home thermal model, so as to stay within the temperature bounds and minimize 
cost.  Additionally, the system ID algorithm must be recursive so as to track the changes in the 
thermal model which occur when there are seasonal, structural and home occupant induced 
changes.  
 

3.2.3.2. Improve system ID performance 

The performance of the system ID algorithm is characterized by (1) the time it takes the 
algorithm to converge to the actual model and (2) the sensitivity of the algorithm to measurement 
noise.  Both of these characteristics are strongly impacted by the choice of forgetting factor.  

The forgetting factor in the recursive least squares algorithm acts as a knob that the designer can 
use to adjust the performance of the algorithm.  The forgetting factor must be between 0 and 1.  
A small forgetting factor results in an algorithm that quickly forgets the previous parameters.  
This is good for fast tracking of the model parameters, but causes the algorithm to be highly 
sensitive to noise.  A large forgetting factor results in an algorithm that remembers the pervious 
parameter values, resulting in slow tracking of the parameters, but has the advantage of being 
less sensitive to noise. 

We started the system ID performance analysis by running the optimizer without measurement 
noise on the inputs.  Initially, the system ID was run with a forgetting factor of 0.98.  This 
resulted in a slow rate of convergence.  To improve the rate of convergence, forgetting factors of 
0.5 and 0.05 were evaluated. Additionally, considering that a low forgetting factor is sensitive to 
noise, we also evaluated a variable forgetting factor that changes in value over time, as shown in 
the following figure. 
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Figure 5 Variable Forgetting Factor 
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he profile for the variable forgetting factor was chosen so that at the beginning of the 

e segment for each simulation was from July 1 to July 10, using California as the 

Table 12 Simulation Results Summary 

Forgetting Factor 
Time to 

Converge (hrs) 
Error in Model 

Total Cost ($) 
Electrical Energy 

 
T
simulation, when the estimate of the model is starting at some initial values far from the actual 
values, the forgetting factor is small so the algorithm can quickly track the model parameters.  As 
time passes, the forgetting factor increases towards unity, making the algorithm less sensitive to 
noise. 

The tim
geographic location, and the results are summarized in Table 12. 
 
 

Estimates (%) 
Consumed 

(kWh) 
0.98 47.37 229 (9.5 days) 0.0034 321.0 
0.5 6 2.2e-12 47.37 321.0 

0.05 6 1.6e-9 47.47 321.2 
Variable 21 4.4e-5 47.37 321.0 

 

he time to converge is defined as the time it takes for the slowest parameter to converge within 

g factor of 0.98 converges the slowest, while the 

 
T
± 1% of the actual value for at least 2.5 hours. 

The results, as expected, show that a forgettin
other forgetting factors converge faster with similar rates.  Additionally, the temperature profiles 
obtained for all forgetting factors were similar.  The temperature stays within bounds after an 
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initial transient, which is caused by a mismatch between the estimated and actual model 
parameters, as shown in reference [10] for temperature zone 1.  Zone 2 temperature profiles are 
similar and are therefore not shown. 

We then introduced Gaussian white noise onto each input measurement and simulated with the 

ve results, the 0.98 forgetting factor and the variable forgetting factor are the 

four forgetting factors again.  In the presence of noise, low values of the forgetting factor (0.05 
and 0.5) cause significant model mismatch which results in very large temperature violations, as 
shown in reference [10] for zone 1 temperature profiles. Zone 2 temperature profiles are similar 
and are therefore not shown.   The low forgetting factors (0.05 and 0.5) were not used for the rest 
of the analysis.   

Based on the abo
only appropriate choices in the presence of noise.  The variable forgetting factor yields improved 
performance because of faster convergence. 

3.2.3.3. Test system ID robustness 

In orde em ID portion of the optimizer will be robust to 

tarted with five different sets of initial model 

 results in a total of 720 simulation runs.  These 720 simulation runs were 

 be highly robust.  For both scenarios, all 720 simulations 

he results were very 

3.3. Feedback Analytics 

ed to develop the feedback analytics that quantify and verify the 

developed the feedback analytics that will provide feedback 

r to thoroughly check that the syst
different noise levels, different initial conditions, and different model parameters, we performed 
an exhaustive system ID robustness evaluation.  The following summarizes the evaluation effort: 

 Simulations were run for 144 different home models.  These models were generated by 
sweeping the critical model parameters around the original model parameters that were 
generated by the Doe-2 simulation tool   

 Each simulation described above was s
estimates  

 The above
performed for 2 different scenarios, summer with a low noise level (variance of 0.01 on 
temperature measurements) and winter with a large noise level. (variance of 0.1 on 
temperature measurements).    

The system ID algorithm turned out to
converged (the convergence criteria is based on the amount of noise applied to the 
measurements).  The average time to converge for each scenario is less than a day.  Histograms 
for convergence times of these scenarios are shown in References [6][10].   

These two scenarios were run with no noise on the room temperature and t
good.  For further improvement, we are in the process of running simulations with noise applied 
to the room temperature measurements.  Additionally, we may implement noise filtering to 
reduce the amount of measurement noise and improve the system ID performance.  Example 
plots for the system ID algorithms results are given in References [6][10].  

For task 3, GE committ
aggregated home response, including pre-cooling the house, responding to a load shedding and 
pricing signal from the utility. 

GE’s team has defined and 
information from the EcoDashBoard to the smart meter and then to the utility server.  The details 
of the analytics are described in the following section and are summarized in Tables 13 and 14. 
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The smart meter and the EcoDashBoard interface shall be a secure two-way communication thru 

age / limit the data transfer rate, the data exchange / flow shall be initiated by queries on 

(xxx.xxx.xxx.xxx), a URL (host.ge.com) or, “localhost” 

er the 

 PV) generation 

tion 
l. 

The

 be a text string filled with fields of characters and values as 

load name”,“date”:”yyyymmdd”,”time”:”hhmm”,“type”:”sheddable load”,“id”:”ip 

Table 13 Data Fields for Load Feedback Analytics 

load name  power 

a wireline or wireless connection. Wireless (e.g., Zigbee or Wi-Fi) connection is the preferred / 
default offering / option since it allows the EcoDashBoard to be moved freely within the home.  
This interface shall serve as the key “information channel” for exchanging critical information 
between the smart meter and the EOS. For security reasons, the information shall flow primarily 
from the meter to the EOS dashboard. A minimum set of absolutely must-have feedback analytic 
information shall be transferred from the EOS dashboard to the meter and then to the utility 
server. 

To man
the receiving end. In other words, the receiver shall initiate a query in order to get information 
from the sender. As results, the sender will respond to the request by returning relevant text 
strings containing the requested data.  The general format of the query request shall be [11]: 

http://HOST_ID/query/QUERY_TYPE 

where HOST_ID is either an IP address 
if the home area network (HAN) service and the EcoDashBoard are on the same physical media / 
device. QUERY_TYPE is specific to each data type as discussed in the following sections. 

The EOS dashboard shall provide back to the smart meter and then to the utility serv
following feedback analytics information upon a query request initiated from the meter / server: 

 Shedable electrical loads and status / mode 
 Distributed power / energy generation (solar
 Local energy storage 
 Plug-in Hybrid Electric Vehicle (PHEV) ID 
 PHEV electrical energy consumption / genera
 User preferences / acceptance on direct load contro

 query commend shall have the format: 

http://HOST_ID/query/FBLoad 

The response of the query shall
follows: 

[{“title”:”
address”,“status”: status value,”sheddableload”; sheddable power,”msg”:”Sheddable 
Load”,”advertUrl”:””}] 
 
 

status value sheddable

T-stat 1 / 0 pppp / 0 

Domestic Hot water 1 / 0 pppp / 0 

Pool Pump 1 / 0 pppp / 0 
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PHEV 1 / 0 pppp / 0 

Dishwasher 1 / 0 pppp / 0 

Dryer 1 / 0 pppp / 0 

Washer 1 / 0 pppp / 0 

where the status value “1” means the load is on and “0” indicate

”,”time”:”0000”,“type”:”sheddable 
sg”:”Sheddable 

module (EESM), 
 analytics shall /can be queried as 

 be defined as: 

e”:”hhmm”,“type”:”DG FB analytics”,“id”:”ip 
city value,”msg”:”DG status”,”advertUrl”:””}] 

Table 14 Data Fields for DG Feedback Analytics 

load Name value 

s off. 

One specific example of dishwasher is: 

[{“title”:”dishwasher”,“date”:”20090101
load”,“id”:”192.35.34.16”,“status”: 1,”sheddableload”; 800,”m
Load”,”advertUrl”:””}] 

For distributed generations (DG) such as solar PV, electrical energy storage 
and PHEV, the feedback

http://HOST_ID/query/FBDG 

The response of the query shall

[{“title”:”load name”,“date”:”yyyymmdd”,”tim
address”,“status”: status value,”capacity”; capa
 
 

status value capacity 

Solar PV 1 / 0 aaaa / 0 

EESM 1 / 0 bb% 

PHEV 1 / 0 cc% 

 
 

here the status value “1” means generating / discharging and “0” represents consuming / 
harging; aaaa is solar PV power generated; bb% and cc% are the remaining capacity in 

e”:”0102”,“type”:”DG FB 
acity”; 5000,”msg”:”DG status”,”advertUrl”:””}] 

W
c
percentage (state of charge for batteries). 

One specific example for solar PV is: 

[{“title”:”Solar PV”,“date”:”20100101”,”tim
analytics”,“id”:”192.35.34.16”,“status”: 1,”cap

While the feedback analytics were developed, we were not able to validate the algorithm in the 
Lab. This was because that the PolicyNet server was provided by a third party vendor, GridNet. 
Accessing the proprietary software was beyond the scope and budget of this project. 
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3.4   Smart Appliance Coordination 

3.4.1  Direct Load Control and Smart Appliance Coordination Algorithms 

The smart appliances are coordinated and controlled by the direct load control module and the 
utility feedback analytics. Task 4 addresses the direct load control from the EOS DLC module to 
the appliances, while Task 3 – Utility Feedback Analytics, discussed and reported in Section 0, 
provides feedback information from the appliances to the DLC module in the EOS. 

Specifically, the direct load control (DLC) module in the EOS controls and manages the 
following major home appliances in the pre-defined default order of priority: 

1. T-stat – HVAC 
2. Domestic water heater (DWH) 
3. Pool Pump 
4. Washer 
5. Dryer 
6. Dishwasher 
7. Large LCD / Plasma TV 
8. Plug loads (computers, computer peripherals / accessories, fax machine, power 

supplies)  
9. Refrigerator (smart or traditional) 
10. Lighting (dimmable or on/off non-dimmable traditional). 

These are mostly discrete types of appliances that have on/off, eco-mode/normal mode, or 
multiple discrete power saving modes (e.g., dimmable lighting). The current typical major 
energy intensive appliances (excluding PHEV in the future) are HVAC and water heater that are 
controlled and managed by the EOS. The rest of the appliances listed above are ranked in the 
order of descending energy consumption from the top to the bottom. This is also the default 
priority ranking for the DLC module when a load shedding command is received from the utility 
and the DLC function is enabled by the consumer. The default priority list also takes into 
account the nature of the appliances, the comfort of the consumers, and criticality of the 
appliances (e.g., the refrigerator cannot be simply turned off due to potential food / health 
hazards). Of course, the priority ranking can be overwritten by the consumers / system owners 
per their specific preferences and choices. 

The DLC initiated from the utility is most commonly used for peak load reduction, especially for 
emergency load shedding. It provides an effective and economic tool for the utility to manage its 
load / power demand with optimally dispatched or minimized generation resources / spinning 
reserves. It also enhances reliability of the electric power system to avoid power outages and thus 
improve customer satisfaction. In addition to the benefits utilities enjoy from DLC, end use 
customers also benefit from the savings DLC generates.  DLC is also relatively simpler to 
implement and adopt compared with other energy management / optimization algorithms. It was 
therefore designed in the EOS as a high priority algorithm to execute. The algorithms that 
coordinate the direct load control for smart appliances are illustrated in Figure 6. 

The following Sections discuss the functional capabilities of DLC algorithm and the smart 
appliance coordination. 
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Figure 6 Flowchart of Direct Load Control for Smart Appliance Coordination 
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3.4.2  Smart AMI Meter and EOS Communication Interface Implementation 

One of the key technology enablers of DLC and smart appliance coordination is the HAN 
communication. In order to pass DLC commands from the utility server, a communication 
channel / means is required from the utility server via the AMI meter to the EOS and then to the 
appliances. This section discusses the communication interface that links the AMI meter and the 
EOS appliances. 

The smart meter and the EcoDashBoard interface shall be a secure two-way communication 
through a wireline or wireless connection. Wireless (Wi-Fi) connection is the preferred / default 
offering / option since it allows the EcoDashBoard to be moved freely within the home.  This 
interface shall serve as the key “information channel” for exchanging critical information 
between the smart meter and the EOS. For security reasons, the information shall flow primarily 
from the meter to the EOS dashboard. A minimum set of absolutely must-have feedback analytic 
information shall be transferred from the EOS dashboard to the meter and then to the utility 
server. 

To manage / limit the data transferred rate, the data exchange / flow shall be initiated by queries 
on the receiving end. In other words, the receiver shall initiate a query in order to get information 
from the sender. As results, the sender will respond to the request by returning relevant text 
strings containing the requested data.  The general format of the query request shall be: 

http://HOST_ID/query/QUERY_TYPE 

where HOST_ID is either an IP address (xxx.xxx.xxx.xxx), a URL (host.ge.com) or, “localhost” 
if the HAN Service and the EcoDashBoard are on the same physical media / device. 
QUERY_TYPE is specific to each data type as discussed in the following sections. 

The smart meter shall provide the following information to the EOS dashboard upon a query 
request from the EOS: 

 Direct load control request / command, including programmable communicating 
thermostat (PCT) 

 Critical peak pricing (CPP) 
 Total electrical energy consummation 
 Consumer alert message 
 Meter ID (e.g., IP address), sub-metering for solar PV and PHEV 
 Utility billing and payment (this can come from the “dashboard and Ethernet 

interface” as an alternative) 
 Power outrage / grid status 
 Rebate and other incentives – e.g., peak time rebate (PTR) 
 Real-time pricing (RTP) 
 Time of use (TOU). 

 

Detailed formats of the above exchanged parameters are defined in the following subsections. 

 

 29



 

3.4.2.1. Direct load control (DLC) request / command, including programmable  

 communicating thermostat (PCT) 

The DLC command shall be issued via the following query: 

http://HOST_ID/query/DLC 

Unlike the other queries where the response returns a vector filled with values, the direct load 
control command from the utility / smart meter to the EOS dashboard shall have a format of 
fields defined as [11]: 

[{“title”:”title content”,“date”:”yyyymmdd”,”time”:”hhmm”,“type”:”type content”,“id”:”ip 
address”,“action”: true or false answer,”variable name”; variable value,”msg”:”msg 
content”,”advertUrl”:””}] 

where yyyymmdd is the year month and date; and hhmm is the hour and minutes when the direct 
load control command is issued. The “title”, “type”, and “id” are defined in Table 15.  The 
“action”, “variable name”, and “variable value” are specified for respective major house load / 
appliance in Table 16.  The msg content is “Mandated Direct Load Control.” The “id” shall be an 
IP address that links to the appliance / load 
 
 

Table 15 Appliance Direct Load Control Command Field 1 

 

 

Appliance title content type content Id value 

T-stat T-stat temperature changed PCTChange T-stat id/IP 

Domestic Hot 
water 

Domestic Hot water 
OFF/ON 

DHWOFF/ON Water tank id/IP 

Pool Pump Pool Pump OFF/ON PoolPumpOFF/ON Pool Pump id/IP 

PHEV PHEV charging OFF/ON PHEVOFF/ON PHEV outlet id/IP 

Dishwasher Dishwasher OFF/ON DishwasherOFF/ON Dishwasher id/IP 

Dryer Dryer OFF/ON DryerOFF/ON Dryer id/IP 

Washer Washer OFF/ON WasherOFF/ON Washer id/IP 

Refrigerator Refrigerator to EcoMode RefrigeratorEco Refrigerator id/IP 

Lighting Dim lighting DimLighting Lighting id/IP 

Plug loads Plug Loads PlugloadOFF/ON Plug load outlet id/IP 
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Table 16 Appliance Direct Load Control Command Field 2 

Appliance action variable name variable value 

T-stat fixedSetback degreeSetback 0 – 20 

Domestic Hot water DHW OFF/ON DHWDLC 0 / 1 

Pool Pump Pool Pump OFF/ON PoolPumpDLC 0 / 1 

PHEV PHEV charging OFF/ON PHEVDLC 0 / 1 

Dishwasher Dishwasher OFF/ON DishWasherDLC 0 / 1 

Dryer Dryer OFF/ON DryerDLC 0 / 1 

Washer Washer OFF/ON WasherDLC 0 / 1 

Refrigerator Refrigerator EcoMode 
OFF/ON 

RefrigEcoModeDLC 0 / 1 

Lighting Dim lighting DimPercentage 0-100% 

Plug loads Plug loads OFF/ON PlugLoadsDLC 0 / 1 

Where the plug loads shall be grouped onto designated smart outlet plug(s) ; or onto the 
designated circuit in the intelligence load panel. 

Here are four specific examples for PCT, Pool Pump, Refrigerator, and Lighting. 

Example 1 – PCT 

[{“title”:”T-stat temperature 
changed”,“date”:”20081029”,”time”:”1530”,“type”:”PCTChange”,“id”:”132.618.6.6”,”fixedSet
back”: false,”degreeSetback”; 2,”msg”:”Mandated Direct Load Control.”,”advertUrl”:””}] 

Example 2 – Pool Pump 

[{“title”:”Pool Pump 
OFF/ON”,“date”:”20081030”,”time”:”0830”,“type”:”PoolPumpOFF/ON”,“id”:”132.618.6.7”,“P
ool Pump OFF/ON”: true,”PoolPumpDLC”; 0,”msg”:”Mandated Direct Load 
Control.”,”advertUrl”:””}] 

Example 3 – Refrigerator 

[{“title”:”Refrigerator to 
EcoMode”,“date”:”20080908”,”time”:”1430”,“type”:”RefrigeratorEco”,“id”: 
“192.168.3.121”,“Refrigerator EcoMode OFF/ON”: true,”RefrigEcoModeDLC”; 
1,”msg”:”Mandated Direct Load Control.”,”advertUrl”:””}] 

Example 4 – Dimmable Lighting 

[{“title”:”Dim 
lighting”,“date”:”20080816”,”time”:”1130”,“type”:”DimLighting”,“id”:”192.168.3.122”,“Dim 
lighting”: true,”DimPercentage”; 60%,”msg”:”Mandated Direct Load Control.”,”advertUrl”:””}] 
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The priorities for load shedding shall be in the order defined in Tables 15 and 16 based on 
consumer power consumption statistics and the impact on quality of life of the consumer. 

3.4.2.2. Critical peak pricing (CPP) 

The CPP shall be a representative critical peak pricing structure that can be used by the utility to 
leverage / influence demand side management. A text string composed of alphabetic and numeric 
letters shall be used to communicate the information [11]. For the following illustrative example, 
192 price data points are used for total of 48 hours with 15-minute time interval between two 
adjacent data points. The first 96 data points are for the previous 24 hours inclusive; and the last 
96 data points for the upcoming 24 hours. The general data format is defined as: 

{“startDate”:”mmdd”,”startTime”:”hhmm”,”value”:[v1,v2,v3,……,v191,v192]}         (1) 

The content of the text string is listed in Table 17.  
 
 

Table 17 CPP data structure and format 

Content Format Range Scaling Interval Default  

Header mmdd mm = 01, 02, …, 12; 
dd = 01, 02, …, 31 

1 N/A mmdd = -1 

Header hhmm hh = 00, 01, …, 23; 
mm = 00, 01, …, 59 

1 N/A hhmm = -1 

Value vi 

(i=1,2,…,129) 
vi = 0, 1,…… 
(integer) 

$0.001 15 minute vi = -1 

 

It is worthwhile noting that –1 has been used to indicate the current setting.  

One specific example is shown below: 

{"startDate":-1,"startTime":"0952","values":[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900,900
,900,900,900,900,900,900,900,900,900,900,400,400,400,400,400,400,400,400,400,400,400,400,
400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,10, 10, 10,10,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1]} 

In this sample, there are three tiers.  The first is 8 hours @ $0.90 / kWh.  The second is 8 hours 
@ $0.40 / kWh and the last is 1 hour @ $0.10 / kWh. For any reporting interval where the 
default contract price is in effect, the element of the vector is ‘-1’.  The current time interval 
pricing of $0.40 / kWh is indicated in bold. 

The CPP information can be obtained by initiating the following query command from the EOS:  

http://HOST_ID/query/pricing. 
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3.4.2.3. Total electrical energy consumption 

The total electricity consumption shall be reported in a similar data format as CPP (formula (1)) 
with the pricing information replaced by electrical energy consumption in 0.001 kWh for a fixed 
time interval.  This matched data format will enable rapid / synchronized data processing and 
analysis. Since only the past / historical consumption is measured and known, the current and 
future reporting periods will always hold ‘-1’ indicating the unknown and to be determined 
consumption. An example energy consumption for 48 hours with 15-minute time interval is 
shown below [11].  The current reporting interval is bolded. 

{"startDate":”0118”,"startTime":"0438","values":[70,65,65,65,65,65,65,65,65,65,565,1490,1415
,865,745,740,740,740,740,740,745,740,520,425,420,550,770,770,775,575,65,65,410,760,760,76
5,765,755,760,1155,1525,1535,750,65,65,65,65,65,65,60,65,65,65,65,65,65,65,65,65,60,65,65,6
5,65,65,65,65,65,65,65,65,65,65,65,60,65,65,65,65,65,65,65,65,65,65,60,65,65,65,65,65,65,65,6
5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1]} 

The electricity consumption query shall be initiated by the EOS using the following command: 

http://HOST_ID/query/usage 

 

3.4.2.4. Consumer alert messages 

Consumer alert messages prompt users with significant event or pricing changes. They shall 
provide users useful information that can be used to make decisions on reducing energy 
consumption, increasing efficiency or improving system reliability. The alert messages can be 
obtain via query command initiated from the EOS dashboard: 

http://HOST_ID/query/alerts 

The response of the query command shall have the generic format [11]: 

[{“alert”:”alert content”,“date”:”yyyymmdd”,”time”:”hhmm”,“type”:”type 
content”,“id”:”NULL”,“alert”: true,”variable name”; variable value,”start 
time”:”mmddhhmm”,”end time”:”mmddhhmm”}] 

where the variable data fields are defined in Table 18. 
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Table 18 Data Fields for Alert Messages 

alert content type content variable name variable value 

RTP Price RTP RTPPrice aaa 

TOU Price TOU TOUPrice bbb 

Expected Peak Load Peak Load PeakLoad cccc 

Grid Outrage Outrage Outrage 1 

Price Rebate Rebate RebatePrice ddd 

Monthly Billing Billing Billing $ffffff 

Payment Payment Payment $gggggg 

 

One specific example of RTP price is: 

[{“alert”:”RTP Price Change”,“date”:”20081105”,”time”:”1800”,“type”:”RTP”,“id”: 

“NULL”,“alert”: true,”RTPPrice”; 400,”start time”:”01111900 ”,”end time”: 

”01182000”}] 

where the new electricity price is 40 c/kWh. Note that unit of 0.001 c/kWh applies to the 
electricity pricing and $0.01 applies to the billing and payment values. 

 

3.5. Laboratory Testing and Analysis 

For Task 5 of the enhanced energy optimization system project, GE’s committed effort was to 
perform a laboratory validation test, and to write a report to describe the performance and 
characterization of the overall system operation under stressed grid conditions. 

Lab tests have been performed at GE Global Research’s Smart Grid Lab in three different system 
scenarios and grid conditions.  They are: 1. Bypassing the energy optimizer, and executing direct 
load control (DLC) commands for emergency load shedding and peak power reduction; 2. 
Utilizing the critical peak pricing signal to manage / reduce peak power consumption and reduce 
utility bill / electricity cost; and 3. Running the energy optimizer for minimizing energy 
consumption by controlling the thermostat, hot water heater, solar PV, and energy storage.  The 
grid stressed conditions are simulated in the form of high critical peak pricing signal indicating 
that the system is overloaded or close to its designed peak load.  

 

 

 

Table 19 summarizes the test scenarios and test results.  
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Table 19 Summary of Test Scenarios and Results 

Scenario Assumption Setup Results Comments 

1. DLC for 
Emergency 
Load 
shedding 

 DLC is generated 
by utility based on 
peak power 
overloading 
situation 

 PCT DLC is used 
for tests 

 Agreement / 
contract available 
between utility 
and consumer 

 Utility offers fixed 
contractual 
incentive 

 PCT DLC command 
generated by 
PolicyNet server 

 PCT command 
deployed to 
EcoDashBoard via 
AMI meter 

 EcoDashBoard sent 
the command to T-
stat 

 Command executed 
by T-stat offsetting 
temperature setpoint 
to stop / cycle 
HVAC  

 T-stat temp 
offset / 
changed 
accordingly 
on T-stat per 
PCT DLC 
command 

 Offset T-stat 
temp setpoint 
will stop / 
cycle HVAC 

 Demo was on PCT 
DLC 

 Concept applies to 
DLC for all 
appliances 

 Load shedding can be 
appliance off or eco-
mode / energy saving 
mode operation 

 Other DLC 
commands defined for 
PolicyNet and 
implemented in HEM 

 Highest priority 

2. Peak load / 
power 
reduction 
using CPP 

 Available variable 
pricing signal 

 48 hr 3-tier CPP 
 Generated by 

utility based on 
overloading or 
peak power 
situation 

 CPP generated by 
PolicyNet server 

 Consumer defines / 
controls threshold 

 Higher than 
threshold CPP 
triggers eco-mode 
operation 

 Eco-mode operation 
save energy and cost 

 Higher than 
threshold 
CPP triggered 
dryer to eco-
mode from 
normal mode 

 Reduced 
Power by ~3 
kW 

 Incentive based (via 
variable pricing 
signal) voluntary 
load shedding 

 Smart appliances 
also improved 
energy efficiency 

 Pro-active peak load 
reduction to avoid 
emergency situation 

 Second highest 
priority 

3. Energy 
Optimization 

 No need for 
emergency 
mandatory and 
incentive based 
voluntary peak 
reduction 

 Target for Energy 
reduction 

 Weather info was 
fed via data file 

 MPC based Closed 
loop control 

 Optimize T-stat / 
HVAC, Hot water 
heater, PV and 
Energy Storage 

 Minimize energy 
and cost 

 T-stat temp 
setpoint set 
accordingly 
by optimizer 
on the 
EcoDashBoar
d display 

 T-stat temp 
setpoint was 
set by Eco-
Dashboard 

 Lowest priority 
 Aimed at improving 

energy efficiency 
and utility bill 
reduction 

 Energy reduction 
rather than peak 
power reduction 

The following sections of the report describe and document the details of the laboratory test setup and 
results of all the three test conditions.  
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3.5.1  Laboratory Test Setup 
 

 

Figure 7 Lab Test Setup and Functional Block Diagram 
 
 
Figure 7 shows a functional block diagram and the actual / physical laboratory setup for the tests 
performed at GE Global Research’s Smart Grid Lab. 

In this setup, there are two major functional areas / subsystems: utility energy management and 
smart home energy management. 

Utility EMS was simulated with a GridNet Policy Server, a GE Wi-max AMI meter and a 
couple of GE microwave data system (MDS) radios. The GridNet policy server has three main 
functions: 1.) Generating direct load control command, specifically, programming 
communication thermostat (PCT) to control T-stat / HVAC for emergency load shedding; 2.) 
Generating, managing, and deploying dynamic / variable pricing signal / policy (e.g., critical 
peak pricing / CPP) to incentivize peak load reduction; and 3. Sending alert and warning 
messages (e.g., electricity price change and / or outage notifications) to consumers. The 
PolicyNet server has a web portal interface with a secure authorized user login. The 
communication between the utility PolicyNet server and the AMI meter is simulated with a GE 
iNet 900 MHz MDS radio network in the laboratory as shown in Figure 7. This simulated 
wireless RF connection is to avoid the relative high cost of building a Wi-Max station for the 
test. Similarly, for cost reason, power line carrier (Home Plug) is used for the experimental setup 
of the AMI meter connection with the home area network (HAN). The GE Wi-Max meter was 
used as a communication gateway that connects the utility EMS function and the Home energy 
management system. 
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Home EMS was setup based on the GE Consumer & Industrial’s smart appliances and home 
energy manager products. As shown in Figure 7, smart appliances used in the experimental setup 
include washer, dryer, refrigerator, dishwasher, range, and microwave. Also included in the setup 
were a smart thermostat and a simulated water meter measurement. A tablet PC was used as the 
EcoDashBoard HEM that provided an interface with the consumer for inputting preferences and 
for displaying energy related information. The tablet PC was also used as a host of the energy 
optimization algorithms. The EcoDashBoard HEM communicates with the smart appliances via 
a meshed Zigbee (smart energy profile [12]) network. The EcoDashBoard communicates with 
the AMI meter via a Wi-Fi signal converted from a Home Plug power line carrier signal. The 
smart appliances have two modes of operation: normal mode and eco-mode (power/energy 
saving mode). In eco-mode operation, the appliances consume only a fraction of the power at 
normal mode. For example, for the dryer, eco-mode consumes about 30% of the power at normal 
mode. The appliances receive a mode control signal from the EcoDashBoard HEM. This mode 
control signal can be derived from either a direct load control signal or a critical peak pricing 
(CPP) signal. Both direct load control and CPP signals come from the utility energy management 
policy server. For the smart thermostat, the optimum temperature setpoint comes from the energy 
optimizer that minimizes the energy consumption and the cost of utility bill. 
 

3.5.2  User Control Options of the Test Scenarios 

The EcoDashBoard HEM provides high-grained control of the end user load by both the energy 
provider and the user.  End users, however, are unlikely to respond positively to a system in 
which the end user cannot disable features at will.  Thus, the EcoDashBoard HEM includes 
switches / buttons with which the user can choose to perform manual operation, or, at their 
discretion, allow any combination of Optimizer, DLC and CPP responses [13].  

Figure 8 shows a screenshot of the EcoDashBoard display that has the switches on the left-side 
which end users can use to select control features.  A manual switch can be used to enable or 
disable all non-manual advanced control features.  In Figure 8, the switches are all in the “off” 
position.  The actual default is “off” for the manual switch and “on” for the other three.  The 
majority of the state changes based on electricity price or DLC are triggered by messages from 
the message dispatcher – one of the software modules.  Although these may occur on a regularly 
scheduled basis, users expect a “real-time” response to their input.  Thus, a change in the 
switches will trigger a state update.  For example, if a DLC is in effect and the DLC response is 
disabled, the DLC state will be negated. Similarly, if a DLC is in effect and the DLC response is 
enabled, the DLC will be instituted.  The same is true for the CPP, Optimizer and manual 
switches. 

Table 20 summarizes all the possible combinations of control options.  It is worth noting that 
there are a number of control options that are very beneficial to the engineers who are developing 
the technology.  However, they could be confusing to some consumers for practical deployment. 
For commercial applications / implementations, control options will be either automated or 
limited to ensure easy use and simplicity.  The three combinations high-lighted in Table 20 are 
the three test scenarios used in the laboratory validation for this project, and they are discussed in 
the following subsections. 

                                                      
 The “Energy Bill Saving” and the “Appliance Power Usage” bar display in all the screenshots of the test results were not kept updated to match 

the exact test conditions since the power usages of the individual appliances were not measured in the setups. 
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Figure 8 User Control Options of Test Scenarios 

 

Table 20  Available / Possible User Controls Combinations 

Control & state FEATURE 

 Optimizer 
Direct Load 
Control (DLC) 

Critical Peak 
Pricing (CPP) 

DLC ON Disabled ON N/A 

DLC OFF 
Optimizer 
switch OFF N/A 

 
CPP ON N/A N/A ON 

CPP OFF N/A N/A OFF 
 

Optimizer ON 
Subject to 
DLC state N/A N/A 

Optimizer OFF OFF N/A N/A 
 
Manual ON OFF OFF OFF 

Manual OFF 
Optimizer 
switch DLC switch CPP switch 
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3.5.3 Direct Load Control for Emergency Load Shedding 

Direct load control (DLC) has the highest priority among the three test scenarios / operation 
modes we evaluated in the Lab. It is designed for emergency load shedding.  When the peak 
power of a power system is approached or exceeded, actions must be taken to relieve the power 
system overloading condition.  Before starting the expensive and time-consuming (to startup) 
peaker generators, the preferred option would be to reduce / drop the non-critical loads to 
balance the generation and demand.  This is typically accomplished via utility commanded DLC. 
To implement this control scheme, the utility company will have an agreement or contract in 
place with end-users who would allow the utility to control some loads directly as needed.  One 
hypothetical example is that the consumers would allow the utility company to turn off / cycle 
the HVAC system five times a month for 30 min each.  In return, the consumer could get a 
$5/month credit off the utility bill. 

We used HVAC as the load in this DLC lab test since it represents 40-50% of the electrical loads 
for a typical household. 

In the Lab test, a PCT DLC command was generated in the utility PolicyNet server as shown in 
Figure 9.  This PCT command offsets the T-stat temperature setpoint by predefined / specified 
degrees. An offset of +2 F was used in the Lab test.  This DLC was deployed from the utility 
PolicyNet server to the AMI meter through an iNet RF radio.  Then the command was passed 
from the AMI meter to the EcoDashBoard via the PLC / Home Plug and Wi-Fi communication 
as shown in Figure 7.  The received DLC command was displayed on the EcoDashBoard display 
as shown in Figure 10.  Figure 10 also shows a comparison of the T-stat temperature setpoint 
display before and after the DLC command was issued.  Figure 11 shows that the PCT DLC 
command was successfully executed from the EcoDashBoard to the actual device (T-stat) by 
offsetting the temperature +2 F degrees higher.  Since both DLC and the energy optimizer have 
the ability of setting the thermostat, to avoid conflict, when a DLC command is in effect, the 
energy optimizer is disabled or bypassed. 
 

3.5.4 Reducing Peak Power Demand by Utilizing Critical Peak Pricing Signal 

This peak load reduction control is designed to be an incentive based voluntary program that 
helps consumers reduce utility bill / energy cost while helping the utility company reduce peak 
load and relieve power system overloads.  The goal of this approach is to take pro-active 
measures when peak demand / load is approaching the limit.  This would help either avoid the re-
active emergency load shedding situation; or help better plan / predict ahead of time for 
emergency load shedding.  Both the utility company and the consumers will benefit from this 
“less intrusive” program.  It is totally voluntary for consumers.  The consumer have total / full 
control of the optional program by enabling / disabling this feature, by defining CPP threshold 
and by defining / specifying other preferences. 

To validate this peak load management method, a CPP policy was generated in the PolicyNet 
server as shown in Figure 12.  There were two tiers (one hour time period for each tier) of CPP 
(25 cents/kWh and 15 cents/kWh) in Figure 12.  The higher than normal electricity price is used 
to simulate / respond to the peak power demand.  On the EcoDashBoard, the user can define a 
threshold that represents the tolerance / willingness of the consumer to participate in the 
voluntary peak power reduction program.  In the test, this threshold was set to 10 cents / kWh. In 
other words, the customer chooses to reduce his/her power demand if the CCP is greater than 10 
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cents/kWh. The power demand / load reduction is done by turning the appliances to eco-mode 
(energy saving mode) of operation.  

In the test, a cloth dryer was used to demonstrate the peak power reduction . Figure 13 shows the 
CPP policy was deployed from the utility policy server to the AMI meter.  Figure 14 shows that 
the EcoDashBoard HEM has received the CPP info, compared it with the user-defined threshold 
(10 cents/kWh), and then decided to turn the dryer into eco-mode of operation.  Figure 14 shows 
the change of appliance operation mode from “normal to Eco” before and after the CPP 
command was executed.  Figure 15 shows the actual power demand / consumption drop from ~3 
kW (normal mode) to ~1 kW (eco-mode) of the cloth dryer. 
 
 

 

Figure 9 Programmable Communicating Thermostat (PCT) DLC Command 
\ 
 

 
(a) Before (b) After 

Figure 10 PCT DLC Display on EcoDashBoard  
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(a) Before (b) After 

Figure 11 PCT DLC Commands Executed in T-stat 

 
 
 
 

 

Figure 12 CPP Policy Generated in PolicyNet 
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Figure 13 CPP Policy Deployed from the PolicyNet 

 
 
 

  
(a) Before (b) After 

Figure 14 Peak Power Reduction in Response to CPP 
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(a) Before (b) After 

Figure 15 Peak Power Reduction Results for Dryer 
 
 
3.5.5 Energy Optimization by Running the Energy Optimizer  

In addition to peak power reduction, base energy load reduction is also an objective of this 
project.  This is accomplished by running an energy optimizer on the EcoDashBoard HEM that 
optimally sets the T-stat and hot water heater temperature setpoints, optimally dispatches solar 
PV generation and manages energy storage.  This is a closed-loop optimal control that minimizes 
energy consumption and utility bill subject to a set of constraints (user defined and/or system / 
equipment imposed).  The consumers will benefit from this via a utility bill / electricity cost 
reduction.  
 
In the specific Lab test, we run the optimizer to set the T-stat temperature setpoint.  The input 
data required by the optimizer, such as historical energy consumption data, ambient 
temperatures, solar insolation forecasts were fed to the optimizer by the data measured from an 
employee’s house.  The optimizer also has a system identification module that identifies and 
updates the thermal model of the house.  Figure 16 shows the optimizer being turned on from the 
off state.  Figure 17 shows the optimal T-stat temperature was calculated and set on the 
EcoDashBoard and on the actual device for the morning duration from 8 am – 10 am. 
 
 

(a) Before (b) After 

Figure 16 Energy Optimizer Turned Off and On 
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(a) Temperature Set on EcoDashBoard (b) Temperature Set in T-stat 

Figure 17 Energy Optimizer Setting the T-Stat Setpoint 

 

3.6. Project Benefits 

The direct benefits of the energy optimization system are two fold: 1.  Peak load reduction by 
emergency load shedding and by utilizing a dynamic / variable electricity pricing signal; and 2. 
Energy and cost / utility bill savings via energy optimization. 

The peak load reduction benefits the utility companies most while the energy savings are more 
for consumers.  It has been demonstrated in the laboratory tests that at the individual appliance / 
load level, for example the cloth dryer, the peak power reduction can be as much as 70% of the 
normal power consumption of the appliance.  While this project is not set up to prove / validate 
the actual / practical peak power reduction capability of the energy optimization system, analysis 
has shown that at a holistic residential level, 15%-25% of peak power reduction is achievable by 
implementing the energy optimization / management technology.  Utility companies will benefit 
from this significant peak power reduction by deferring capital investment on spinning reserve 
generation capacity, transmission and distribution infrastructure build-up, etc.  This will also 
improve power system reliability and customer satisfaction by reducing and minimizing the 
number of power outages.  Utility companies can and should share the benefits / profits with 
customers, thereby encouraging active and large-scale customer participation. 

On the other hand, the consumers will benefit the most from the energy savings through the 
energy optimization system. This would be evident from the monthly utility bills.  The energy 
optimization system is set up as an optimization problem with the objective functions of 
minimizing energy consumption and utility bills.  GE project team has performed DSM benefit 
analysis using DOE EIA RECS 2001 data.  The results indicated that 13-27% energy efficiency 
improvement is achievable by implementing DSM and energy management technologies. 
Specifically, the benefit of the energy optimization system developed in this project was 
simulated using a California home as an example.  The assumptions for this California home are: 

 One thermal zone 
 Internal heat gain from loads, people 
 Natural gas (NG) boiler heating: 13.7 kW, efficiency = 75% 
 Electric AC: 2 kW 
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 Electric hot water heater: 4.5 kW 
 Battery storage: 1.5 kW, 10 kWh 
 2 kW of roof-mounted solar PV 
 State-space model: thermal capacitance and resistance. 

The yearly sourced energy savings (electricity and NG) were simulated using the model 
predictive control (MPC) based energy optimizer with banded temperature setpoints for the 
thermostat defined as in Figure 18.  The upper and lower temperature bands / bounds were 
designed to accommodate the consumers’ comfort level while allowing the setpoint to flow to 
enable energy and cost savings.  Figure 19 shows the estimated potential energy and cost savings 
from the simulation. There are five incremental cases / scenarios simulated: 

1. Base-line without energy optimization 
2. Manually adjusted thermostat without any automation / optimization 
3. MPC based energy optimization with banded thermostat temperatures 
4. With solar PV 
5. With energy storage. 

The energy consumption in kWh for all the five different scenarios were plotted in Figure 19a.  
Figure 19b showed the incremental energy and cost savings in the format of a pie chart.  One can 
see from Figure 19b that there were 3.5% energy and 3.3% cost incremental savings of the 
adjusted thermostat from the baseline; 24.1% energy and 18.1% cost incremental savings of the 
energy optimization from the adjusted thermostat; 6.9% energy and 14.6% cost incremental 
savings by adding solar PV into the optimization; and 0.1% energy and 3.3% cost incremental 
savings by adding the energy storage.  The biggest gain on energy and cost came from the energy 
optimization.  It is worth noting that this was only ONE hypothetical example used to illustrate 
the potential of the energy optimization on energy and cost savings.  The actual energy and cost 
savings depends on the specifics of the use cases / applications.  Nonetheless, the simulations 
showed that energy optimization could potentially provide significant energy and cost savings 
directly to consumers.  
 
 

 

Figure 18 Banded Thermostat Temperature Setpoint 
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(a) Energy Saving Scenarios (b) Energy Saving / Cost Saving 

Figure 19 Potential Energy Savings by the Energy Optimization 
 
 
Indirectly, the energy saving will also translate to CO2 footprint reduction and environmental benefit. It 
would reduce dependence on fossil fuels and strengthen the nation’s energy security. 

 

4. Glossary / Acronyms and Abbreviations 
 

CPP – Critical Peak Pricing 

DG – Distributed Generation 

DHW – Domestic Hot Water 

DLC – Direct Load Control 

DOE – Department of Energy 

DR – Demand Response 

DSM – Demand Side Management 

EESM – Electrical Energy Storage Module 

EHEMS – EcoDashBoard Home  / EcoHome Energy Management System 

EIA – Energy Information Administration 

EOS – Energy Optimization System 

GUI / HMI – Graphical User Interface / Human Machine Interface 

HAN – Home Area Network 

HCEI – Hawaii Clean Energy Initiative 

HNEI – Hawaii Natural Energy Institute 

PCT – Programmable Communicating Thermostat 

PHEV – Plug-in Hybrid Electric Vehicle 

RECS - Residential Energy Consumption Survey 

SOC – State of Charge 

Solar PV – Solar Photovatic 

TOU- Time Of Use. 
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