The increasing penetration levels of renewable energy sources on power grids poses a number of challenges for grid operations including increased frequency variability, voltage transients, power quality reduction, and loss of reliability. Such effects are magnified on small island grids such as the Hawaiian Islands. Battery Energy Storage Systems (BESS) show promise in mitigating many of the effects of a high penetration of non-dispatchable renewable generation (e.g. wind and solar). Despite the large number of BESS projects already in place, and to the best of our knowledge, most of the published studies so far are modeling studies and very few are actual field studies of a grid-scale BESS operating under real-world conditions. The Hawaii Natural Energy Institute has initiated an integrated research, testing, and evaluation program to assess the benefits of grid-scale BESS for various ancillary service applications conditions to forecast their durability.
Funded under ONR/APRISES, the purpose of this still ongoing project is to understand and accelerate aging of commercial cells used in large scale BESS based on single cell laboratory testing. Overall, this project has two objectives: First to test individual single cells in a laboratory setting to understand the cell aging patterns, reproduce the aging observed in real life and accelerate this degradation to enable the end of life prognosis of the installed BESS. Second, to monitor, quantify and analyze the battery degradation observed in the installed BESS systems. Research conducted for this project is completed in the PakaLi Battery Laboratory.
Schematic test plan of the laboratory testing for the BESS single cells.
Publications
- 2020, M. Dubarry, D. Beck, Big data training data for artificial intelligence-based Li-ion diagnosis and prognosis, Journal of Power Sources, Vol. 479, Paper 228806.
- 2020, M. Dubarry, G. Baure, Perspective on Commercial Li-ion Battery Testing, Best Practices for Simple and Effective Protocols, Electronics, Vol. 9, Issue 1, Paper 152. (Open Access: PDF)
- 2019, A. Barai, K. Uddin, M. Dubarry, L. Somerville, A. McGordon, P. Jennings, I. Bloom, A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells, Progress in Energy and Combustion Science, Vol. 72, pp. 1-32. (Open Access: PDF)
- 2019, M. Dubarry, G. Baure, C. Pastor-Fernández, T.F. Yu, W.D. Widanage, J. Marco, Battery energy storage system modeling: A combined comprehensive approach, Journal of Energy Storage, Vol. 21, pp. 172-185. (Open Access: PDF)
- 2018, K. Uddin, M. Dubarry, M.B. Glick, The viability of vehicle-to-grid operations from a battery technology and policy perspective, Energy Policy, Vol. 113, pp. 342-347. (Open Access: PDF)
- 2017, M. Dubarry, A. Devie, K. Stein, M. Tun, M. Matsuura, R. Rocheleau, Battery Energy Storage System battery durability and reliability under electric utility grid operations: Analysis of 3 years of real usage, Journal of Power Sources, Vol. 338, pp. 65-73.
- 2017, M. Dubarry, M. Berecibar, A. Devie, D. Ansean, N. Omar, I. Villarreal, State of Health Battery Estimator Enabling Degradation Diagnosis: Model and Algorithm Description, Journal of Power Sources, Vol. 360, pp. 59-69.
- 2012, M. Dubarry, C. Truchot, B.Y. Liaw, Synthesize battery degradation modes via a diagnostic and prognostic model, Journal of Power Sources, Vol. 219, pp. 204-216.